Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
dc.authorid | kadhim, yezi ali/0000-0002-1111-8202 | |
dc.authorid | Mishra, Alok/0000-0003-1275-2050 | |
dc.authorid | Khan, Muhammad/0000-0002-9195-3477 | |
dc.authorscopusid | 57214819564 | |
dc.authorscopusid | 57209876827 | |
dc.authorscopusid | 7201441575 | |
dc.authorwosid | kadhim, yezi ali/ADW-8078-2022 | |
dc.authorwosid | Mishra, Alok/AAE-2673-2019 | |
dc.authorwosid | Khan, Muhammad/N-5478-2016 | |
dc.contributor.author | Kadhim, Yezi Ali | |
dc.contributor.author | Khan, Muhammad Umer | |
dc.contributor.author | Mishra, Alok | |
dc.contributor.other | Software Engineering | |
dc.contributor.other | Mechatronics Engineering | |
dc.date.accessioned | 2024-07-05T15:24:01Z | |
dc.date.available | 2024-07-05T15:24:01Z | |
dc.date.issued | 2022 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Kadhim, Yezi Ali] Atilim Univ, Dept Modeling & Design Engn Syst MODES, TR-06830 Ankara, Turkey; [Kadhim, Yezi Ali] Atilim Univ, Dept Elect & Elect Engn, TR-06830 Ankara, Turkey; [Khan, Muhammad Umer] Atilim Univ, Dept Mechatron Engn, TR-06830 Ankara, Turkey; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Mishra, Alok] Molde Univ Coll Specialized Univ Logist, Informat & Digitalizat Grp, N-6410 Molde, Norway | en_US |
dc.description | kadhim, yezi ali/0000-0002-1111-8202; Mishra, Alok/0000-0003-1275-2050; Khan, Muhammad/0000-0002-9195-3477 | en_US |
dc.description.abstract | Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors. | en_US |
dc.description.sponsorship | Molde University College-Specialized Univ. in Logistics | en_US |
dc.description.sponsorship | Authors thanks to the Molde University College-Specialized Univ. in Logistics, for the support of Open access fund. | en_US |
dc.identifier.citation | 7 | |
dc.identifier.doi | 10.3390/s22228999 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.issue | 22 | en_US |
dc.identifier.pmid | 36433595 | |
dc.identifier.scopus | 2-s2.0-85142718337 | |
dc.identifier.uri | https://doi.org/10.3390/s22228999 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/2374 | |
dc.identifier.volume | 22 | en_US |
dc.identifier.wos | WOS:000887656700001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Khan, Muhammad Umer | |
dc.institutionauthor | Mıshra, Alok | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | deep learning | en_US |
dc.subject | CNN | en_US |
dc.subject | auto-encoder | en_US |
dc.subject | ant colony optimization | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | brain tumor | en_US |
dc.title | Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e2e22115-4c8f-46cc-bce9-27539d99955e | |
relation.isAuthorOfPublication | de97bc0b-032d-4567-835e-6cd0cb17b98b | |
relation.isAuthorOfPublication.latestForDiscovery | e2e22115-4c8f-46cc-bce9-27539d99955e | |
relation.isOrgUnitOfPublication | d86bbe4b-0f69-4303-a6de-c7ec0c515da5 | |
relation.isOrgUnitOfPublication | cfebf934-de19-4347-b1c4-16bed15637f7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | d86bbe4b-0f69-4303-a6de-c7ec0c515da5 |