Deep Learning-Based Computer-Aided Diagnosis (cad): Applications for Medical Image Datasets

dc.contributor.author Kadhim, Yezi Ali
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.contributor.other Mechatronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:24:01Z
dc.date.available 2024-07-05T15:24:01Z
dc.date.issued 2022
dc.description kadhim, yezi ali/0000-0002-1111-8202; Mishra, Alok/0000-0003-1275-2050; Khan, Muhammad/0000-0002-9195-3477 en_US
dc.description.abstract Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors. en_US
dc.description.sponsorship Molde University College-Specialized Univ. in Logistics en_US
dc.description.sponsorship Authors thanks to the Molde University College-Specialized Univ. in Logistics, for the support of Open access fund. en_US
dc.identifier.doi 10.3390/s22228999
dc.identifier.issn 1424-8220
dc.identifier.scopus 2-s2.0-85142718337
dc.identifier.uri https://doi.org/10.3390/s22228999
dc.identifier.uri https://hdl.handle.net/20.500.14411/2374
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Sensors
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject deep learning en_US
dc.subject CNN en_US
dc.subject auto-encoder en_US
dc.subject ant colony optimization en_US
dc.subject COVID-19 en_US
dc.subject brain tumor en_US
dc.title Deep Learning-Based Computer-Aided Diagnosis (cad): Applications for Medical Image Datasets en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id kadhim, yezi ali/0000-0002-1111-8202
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.id Khan, Muhammad/0000-0002-9195-3477
gdc.author.institutional Khan, Muhammad Umer
gdc.author.institutional Mıshra, Alok
gdc.author.scopusid 57214819564
gdc.author.scopusid 57209876827
gdc.author.scopusid 7201441575
gdc.author.wosid kadhim, yezi ali/ADW-8078-2022
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.author.wosid Khan, Muhammad/N-5478-2016
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Kadhim, Yezi Ali] Atilim Univ, Dept Modeling & Design Engn Syst MODES, TR-06830 Ankara, Turkey; [Kadhim, Yezi Ali] Atilim Univ, Dept Elect & Elect Engn, TR-06830 Ankara, Turkey; [Khan, Muhammad Umer] Atilim Univ, Dept Mechatron Engn, TR-06830 Ankara, Turkey; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Mishra, Alok] Molde Univ Coll Specialized Univ Logist, Informat & Digitalizat Grp, N-6410 Molde, Norway en_US
gdc.description.issue 22 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 8999
gdc.description.volume 22 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4309689151
gdc.identifier.pmid 36433595
gdc.identifier.wos WOS:000887656700001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 24.0
gdc.oaire.influence 4.1164596E-9
gdc.oaire.isgreen true
gdc.oaire.keywords ant colony optimization
gdc.oaire.keywords deep learning; CNN; auto-encoder; ant colony optimization; COVID-19; brain tumor
gdc.oaire.keywords Brain Neoplasms
gdc.oaire.keywords Computers
gdc.oaire.keywords Chemical technology
gdc.oaire.keywords auto-encoder
gdc.oaire.keywords deep learning
gdc.oaire.keywords COVID-19
gdc.oaire.keywords TP1-1185
gdc.oaire.keywords Article
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Humans
gdc.oaire.keywords Diagnosis, Computer-Assisted
gdc.oaire.keywords CNN
gdc.oaire.keywords brain tumor
gdc.oaire.popularity 2.1349608E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 4.247
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 22
gdc.plumx.crossrefcites 25
gdc.plumx.mendeley 56
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 7
gdc.plumx.scopuscites 30
gdc.scopus.citedcount 30
gdc.wos.citedcount 18
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication cfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections