Search Results

Now showing 1 - 10 of 91
  • Article
    Defect Characterization of Ga4se3< Layered Single Crystals by Thermoluminescence
    (indian Acad Sciences, 2016) Isik, M.; Delice, S.; Gasanly, N.
    Trapping centres in undoped Ga4Se3S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low-temperature range of 15-300 K. After illuminating the sample with blue light (similar to 470 nm) at 15 K, TL glow curve exhibited one peak around 74 K when measured with a heating rate of 0.4 K/s. The results of the various analysis methods were in good agreement about the presence of one trapping centre with an activation energy of 27 meV. Analysis of curve fitting method indicated that mixed order of kinetics dominates the trapping process. Heating rate dependence and distribution of the traps associated with the observed TL peak were also studied. The shift of peak maximum temperature from 74 to 113 K with increasing rate from 0.4 to 1.2 K/s was revealed. Distribution of traps was investigated using an experimental technique based on cleaning the centres giving emission at lower temperatures. Activation energies of the levels were observed to be increasing from 27 to 40 meV by rising the stopping temperature from 15 to 36 K.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Linear and Nonlinear Optical Properties of Bi12geo20 Single Crystal for Optoelectronic Applications
    (Elsevier Sci Ltd, 2023) Isik, M.; Gasanly, N. M.
    The present paper aims at presenting linear and nonlinear optical properties of Bi12GeO20 single crystals grown by Czochralski method. Transmission and reflection measurements were performed in the 400-1000 nm region. The recorded spectra were analyzed considering well-known optical models. Spectral dependencies of absorption coefficient, skin depth, refractive index, real and imaginary components of dielectric function were presented. The analyses performed on absorption coefficient showed direct bandgap and Urbach energies as 2.56 and 0.22 eV, respectively. The first-and third-order nonlinear susceptibilities and nonlinear refractive index of the crystal were also reported in the present work. The results of the present paper would provide valuable information for optoelectronic device applications of Bi12GeO20.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 5
    Growth and Characterization of Pbmo0.75w0.25o4 Single Crystal: a Promising Material for Optical Applications
    (Elsevier Science Sa, 2023) Isik, M.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    The present paper reports the structural and optical properties of PbMo0.75W0.25O4 single crystals grown by Czochralski method. XRD pattern of the crystal indicated well-defined two diffraction peaks associated with tetragonal crystalline structure. Raman and infrared spectra of the grown single crystals were presented to get information about the vibrational characteristics. Observed Raman modes were associated with modes of PbMoO4 and PbWO4. Eight bands were revealed in the infrared spectrum. The bands observed in the spectrum were attributed to multiphonon absorption processes. Transmission spectrum was measured in the 375-700 nm spectral region. The analyses of the spectrum resulted in direct band gap energy of 3.12 +/- 0.03 eV. The compositional dependent band gap energy plot was drawn considering the reported band gap energies of PbMoO4, PbWO4 and revealed band gap of PbMo0.75W0.25O4 single crystal. An almost linear behavior of composition-band gap energy was seen for PbMo1-xWxO4 compounds. Urbach energy was also found from the absorption coefficient analysis as 0.082 +/- 0.002 eV.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Absorption Edge and Optical Constants of Tl2ga2< Crystals From Reflection and Transmission, and Ellipsometric Measurements
    (Elsevier, 2012) Isik, M.; Gasanly, N. M.
    The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies. Spectroscopic ellipsometry measurements on Tl2Ga2S3Se crystals were carried out on the layer-plane (0 0 1) surfaces with light polarization E perpendicular to c* in the 1.20-4.70 eV spectral range at room temperature. The real and imaginary parts of the dielectric function as well as refractive and absorption indices were found as a result of analysis of ellipsometric data. The Wemple-DiDomenico single-effective-oscillator model was used to study the dispersion of the refractive index in the below band gap energy range. The structures of critical points have been characterized from the second derivative spectra of the dielectric function. The analysis revealed four interband transition structures with 3.14, 3.40, 3.86 and 4.50 eV critical point energies. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Determination of Trapping Parameters of Thermoluminescent Glow Peaks of Semiconducting Tl2ga2< Crystals
    (Pergamon-elsevier Science Ltd, 2015) Isik, M.; Yildirim, T.; Gasanly, N. M.
    Thermoluminescence (TL) properties of Tl2Ga2S3Se layered single crystals were researched in the temperature range of 290-770 K. U glow curve exhibited two peaks with maximum temperatures of similar to 373 and 478 K. Curve fitting, initial rise and peak shape methods were used to determine the activation energies of the trapping centers associated with these peaks. Applied methods were in good agreement with the energies of 780 and 950 meV. Capture cross sections and attempt-to-escape frequencies of the trapping centers were reported. An energy level diagram showing transitions in the band gap of the crystal was plotted under the light of the results of the present work and previously reported papers on photoluminescence, thermoluminescence and thermally stimulated current measurements carried out below room temperature. (C) 2015 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 15
    Structural and Optical Properties of Ga2se3< Crystals by Spectroscopic Ellipsometry
    (Springer, 2019) Guler, I.; Isik, M.; Gasanly, N. M.; Gasanova, L. G.; Babayeva, R. F.
    Optical and crystalline structure properties of Ga2Se3 crystals were analyzed utilizing ellipsometry and x-ray diffraction (XRD) experiments, respectively. Components of the complex dielectric function (epsilon=epsilon(1)+i epsilon(2)) and refractive index (N=n+ik) of Ga2Se3 crystals were spectrally plotted from ellipsometric measurements conducted from 1.2eV to 6.2eV at 300K. From the analyses of second-energy derivatives of epsilon(1) and epsilon(2), interband transition energies (critical points) were determined. Absorption coefficient-photon energy dependency allowed us to achieve a band gap energy of 2.02eV. Wemple and DiDomenico single effective oscillator and Spitzer-Fan models were accomplished and various optical parameters of the crystal were reported in the present work.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Trapping Centers and Their Distribution in Tl2ga2< Layered Single Crystals
    (Pergamon-elsevier Science Ltd, 2009) Isik, M.; Gasanly, N. M.
    Thermally stimulated current (TSC) measurements with current flowing perpendicular to the layers were carried out on Tl2Ga2Se3S layered single crystals in the temperature range of 10-260K. The experimental data were analyzed by using different methods, such as curve fitting, initial rise and isothermal decay methods. The analysis revealed that there were three trapping centers with activation energies of 12, 76 and 177 meV. It was concluded that retrapping in these centers was negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. The capture cross section and the concentration of the traps have been also determined. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light illumination temperatures. This experimental technique provided values of 10 and 88 meV/decade for the traps distribution related to two different trapping centers. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 24
    Synthesis and Temperature-Tuned Band Gap Characteristics of Magnetron Sputtered Znte Thin Films
    (Elsevier, 2020) Isik, M.; Gullu, H. H.; Parlak, M.; Gasanly, N. M.
    Zinc telluride (ZnTe) is one of the attractive semiconducting compounds used in various optoelectronic devices. The usage of ZnTe in optoelectronic applications directs researchers to search its optical characteristics in great detail. For this purpose, structural and optical properties of magnetron sputtered ZnTe thin films were studied by means of x-ray diffraction and transmission spectroscopy measurements. Structural analyses indicated that ZnTe thin films having cubic crystalline structure were successfully grown on soda-lime glass substrates. Transmittance spectra in the 400-1000 nm were recorded in between 10 and 300 K temperature region. The analyses of absorption coefficient spectra resulted in band gap energies decreasing from around 2.31 (10 K) to 2.26 eV (300 K). Temperature dependency of gap energy was studied by Varshni and O'Donnell-Chen relations to determine various optical parameters like absolute zero temperature band gap energy, change of gap energy with temperature, phonon energy.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Structural and Temperature-Tuned Bandgap Characteristics of Thermally Evaporated β-in2< Thin Films
    (Springer, 2021) Surucu, O.; Isik, M.; Terlemezoglu, M.; Gasanly, N. M.; Parlak, M.
    In2S3 is one of the attractive compounds taking remarkable interest in optoelectronic device applications. The present study reports the structural and optical characteristics of thermally evaporated beta-In2S3 thin films. The crystalline structure of the thin films was found as cubic taking into account the observed diffraction peaks in the X-ray diffraction pattern. The atomic compositional ratio of constituent elements was obtained as consistent with chemical formula of In2S3. Three peaks around 275, 309 and 369 cm(-1) were observed in the Raman spectrum. Temperature-tuned bandgap energy characteristics of the In2S3 thin films were revealed from the investigation of transmittance spectra obtained at various temperatures between 10 and 300 K. The analyses of the transmittance spectra indicated that direct bandgap energy of the In2S3 thin films decreases from 2.40 eV (at 10 K) to 2.37 eV (at 300 K) with the increase of measurement temperature. The bandgap energy vs. temperature relation was investigated by means of Varshni optical model. The fitting of the experimental data under the light of theoretical expression revealed the absolute zero bandgap energy, the rate of change of bandgap energy and Debye temperature.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    The Effect of Zn Concentration on the Structural and Optical Properties of Cd1-xznx< Nanostructured Thin Films
    (Springer, 2021) Isik, M.; Terlemezoglu, M.; Isik, S.; Erturk, K.; Gasanly, N. M.
    The structural and optical properties of electrodeposited Cd1-xZnxS nanostructured thin films were investigated in the present paper for compositions of x = 0, 0.03, 0.06 and 0.09. X-ray diffraction patterns of the deposited thin films consisted of diffraction peaks related to cubic crystal lattice. The atomic compositional ratios were determined by performing energy dispersive spectroscopy measurements. Scanning electron microscopy images indicated that deposited thin films have nanostructured forms. Raman spectra of the Cd1-xZnxS thin films exhibited two vibrational modes associated with longitudinal optical mode and its first overtone. Transmission measurements were performed on the deposited thin films to get their band gap energies. It was seen from the analyses of absorption coefficient that band gap energy of Cd1-xZnxS thin films increases almost linearly from 2.40 to 2.51 eV as the composition was increased from x = 0 to x = 0.09.