The effect of Zn concentration on the structural and optical properties of Cd<sub>1-x</sub>Zn<sub>x</sub>S nanostructured thin films

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The structural and optical properties of electrodeposited Cd1-xZnxS nanostructured thin films were investigated in the present paper for compositions of x = 0, 0.03, 0.06 and 0.09. X-ray diffraction patterns of the deposited thin films consisted of diffraction peaks related to cubic crystal lattice. The atomic compositional ratios were determined by performing energy dispersive spectroscopy measurements. Scanning electron microscopy images indicated that deposited thin films have nanostructured forms. Raman spectra of the Cd1-xZnxS thin films exhibited two vibrational modes associated with longitudinal optical mode and its first overtone. Transmission measurements were performed on the deposited thin films to get their band gap energies. It was seen from the analyses of absorption coefficient that band gap energy of Cd1-xZnxS thin films increases almost linearly from 2.40 to 2.51 eV as the composition was increased from x = 0 to x = 0.09.

Description

Gasanly, Nizami/0000-0002-3199-6686; Isik, Mehmet/0000-0003-2119-8266

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

3

WoS Q

Q2

Scopus Q

Source

Volume

32

Issue

20

Start Page

25225

End Page

25233

Collections