39 results
Search Results
Now showing 1 - 10 of 39
Article Citation - WoS: 5Citation - Scopus: 6Photoelectronic and Electrical Properties of Tl2ingas4< Layered Crystals(Pergamon-elsevier Science Ltd, 2007) Qasrawi, A. F.; Gasanly, N. M.Tl2InGaS4 layered crystals are studied through the dark electrical conductivity, space charge limited current and illumination- and temperature-dependent photoconductivity measurements in the temperature regions of 220-350 K, 300-400 K and 200-350 K, respectively. The space charge limited current measurements revealed the existence of a single discrete trapping level located at 0.44 eV. The dark electrical conductivity showed the existence of two energy levels of 0.32 eV and 0.60 eV being dominant above and below 300 K, respectively. The photoconductivity measurements reflected the existence of two other energy levels located at 0.28 eV and 0.19 eV at high and low temperatures, respectively. The photocurrent is observed to increase with increasing temperature up to a maximum temperature of 330 K. The illumination dependence of photoconductivity is found to exhibit supralinear recombination in all the studied temperature ranges. The change in recombination mechanism is attributed to exchange in the behavior of sensitizing and recombination centers. (C) 2006 Elsevier Ltd. All rights reserved.Article Citation - WoS: 22Citation - Scopus: 22Exploring Temperature-Dependent Bandgap and Urbach Energies in Cdte Thin Films for Optoelectronic Applications(Elsevier, 2024) Surucu, O.; Surucu, G.; Gasanly, N. M.; Parlak, M.; Isik, M.This study examines CdTe thin films deposited via RF magnetron sputtering, focusing on structural and optical properties. X-ray diffraction, Raman spectroscopy, and SEM assessed structural characteristics. Optical properties were analyzed through transmittance measurements from 10 to 300 K. Tauc plots and Varshni modeling revealed a temperature-dependent bandgap, increasing from 1.49 eV at room temperature to 1.57 eV at 10 K. Urbach energy rose from 82.7 to 93.7 meV with temperature. These results are essential for applications where temperature affects CdTe-based device performance.Article Hopping Conduction in Ga4se3< Layered Single Crystals(Pergamon-elsevier Science Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.The conduction mechanism in Ga4Se3S single crystals has been investigated by means of dark and illuminated conductivity measurements for the first time. The temperature-dependent electrical conductivity analysis in the region of 100-350 K, revealed the dominance of the thermionic emission and the thermally assisted variable range hopping (VRH) of charged carriers above and below 170 K, respectively. The density of states near the Fermi level and the average hopping distance for this crystal in the dark were found to be 7.20 x 10(15) cm(-3) eV(-1) and 7.56 x 10(-6) cm, respectively. When the sample was illuminated, the Mott's VRH parameters are altered, particularly, the average hopping distance and the density of states near the Fermi level increase when light intensity increases. This action is attributed to the electron generation by photon absorption, which in turn leads to the Fermi level shift and/or trap density reduction by electron-hole recombination. (C) 2008 Elsevier Ltd. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 5Thermoluminescence Properties of Tl2ga2< Layered Single Crystals(Amer inst Physics, 2013) Delice, S.; Isik, M.; Bulur, E.; Gasanly, N. M.The trap center(s) in Tl2Ga2S3Se single crystals has been investigated from thermoluminescence (TL) measurements in the temperature range of 10-300 K. Curve fitting, initial rise, and peak shape methods were applied to observed TL glow curve to evaluate the activation energy, capture cross section, and attempt-to-escape frequency of the trap center. One trapping center has been revealed with activation energy of 16 meV. Moreover, the characteristics of trap distribution have been studied using an experimental technique based on different illumination temperature. An increase of activation energy from 16 to 58 meV was revealed for the applied illumination temperature range of 10-25K. (C) 2013 AIP Publishing LLC.Article Citation - WoS: 1Citation - Scopus: 1Hole-Polar Phonon Interaction Scattering Mobility in Chain Structured Tlse0.75s0.25< Crystals(Wiley-blackwell, 2009) Qasrawi, A. F.; Gasanly, N. M.In this study, the electrical resistivity, charge carriers density and Hall mobility of chain structured TlSe0.75S0.25 crystal have been measured and analyzed to establish the dominant scattering mechanism in crystal. The data analyses have shown that this crystal exhibits an extrinsic p-type conduction. The temperature-dependent dark electrical resistivity analysis reflected the existence of three energy levels located at 280 meV, 68 meV and 48 meV. The temperature dependence of carrier density was analyzed by using the single donor-single acceptor model. The carrier concentration data were best reproduced assuming the existence of an acceptor impurity level being located at 68 meV consistent with that observed from resistivity measurement, The model allowed the determination of the hole effective mass and the acceptor-donor concentration difference as 0.44m(0) and 2.2 x 10(12) cm(-3), respectively. The Hall mobility of the TlSe0.75S0.25 crystal is found to be limited by the scattering of charged carriers over the (chain) boundaries and the scattering of hole-polar phonon interactions above and below 300 K, respectively. The value of the energy barrier height at the chain boundaries was found to be 261 meV. The polar phonon scattering mobility revealed the high-frequency and static dielectric constants of 13.6 and 15.0, respectively. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimArticle Citation - WoS: 2Citation - Scopus: 2Electron-Lattice Interaction Scattering Mobility in Tl2ingase4< Single Crystals(Iop Publishing Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.In this work, the dark electrical resistivity, charge carrier density and Hall mobility of Tl(2)InGaSe(4) single crystal have been recorded and analyzed to investigate the dominant scattering mechanism in the crystal. The data analyses have shown that this crystal exhibits an extrinsic n-type conduction. The temperature-dependent dark electrical resistivity analysis reflected the existence of two energy levels as 0.396 and 0.512 eV, being dominant above and below 260 K, respectively. The temperature dependence of the carrier density was analyzed by using the single-donor-single-acceptor model. The latter analysis has shown that the above maintained 0.512 eV energy level is a donor impurity level. The compensation ratio for this crystal is determined as 0.96. The Hall mobility of Tl(2)InGaSe(4) is found to be limited by the scattering of electron-acoustic phonon interactions. The calculated theoretical acoustic phonon scattering mobility agrees with the experimental one under the condition that the acoustic deformation potential is 12.5 eV.Article Citation - WoS: 2Citation - Scopus: 2Space-charge-limited currents and photoconductive properties of Tl2InGaSe4 layered crystals(Taylor & Francis Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.The extrinsic electronic parameters of Tl2InGaSe4 layered crystals were investigated through measurement of the temperature-dependent dark conductivity, space-charge-limited currents and photoconductivity. Analysis of the dark conductivity reveals the existence of two extrinsic energy levels at 0.40 and 0.51 eV below the conduction band edge, which are dominant above and below 260 K, respectively. Current-voltage characteristics show that the one at 0.51 eV is a trapping energy level with a concentration of (4.8-7.7) x 10(10) cm(3). Photoconductivity measurements reveal the existence of another energy level located at 0.16 eV. In the studied temperature range, the photocurrent increases with increasing temperature. The dependence of the photoconductivity on the incident light intensity exhibits a linear recombination character near room temperature and a supralinear character as the temperature decreases. The change in recombination mechanism is attributed to an exchange in the behavior of sensitizing and recombination centres.Article Citation - WoS: 5Citation - Scopus: 5Optical Properties of Tlgaxin1-x< Mixed Crystals (0.5 ≤ x ≤ 1) by Spectroscopic Ellipsometry, Transmission, and Reflection(Taylor & Francis Ltd, 2014) Isik, M.; Delice, S.; Gasanly, N. M.The layered semiconducting TlGaxIn1-xSe2-mixed crystals (0.5 <= x <= 1) were studied for the first time by spectroscopic ellipsometry measurements in the 1.2-6.2 eV spectral range at room temperature. The spectral dependence of the components of the complex dielectric function, refractive index, and extinction coefficient were revealed using an optical model. The interband transition energies in the studied samples were found from the analysis of the second-energy derivative spectra of the complex dielectric function. The effect of the isomorphic cation substitution (indium for gallium) on critical point energies in TlGaxIn1-xSe2 crystals was established. Moreover, the absorption edge of TlGaxIn1-xSe2 crystals have been studied through the transmission and reflection measurements in the wavelength range of 500-1100 nm. The analysis of absorption data revealed the presence of both optical indirect and direct transitions. It was found that the energy band gaps decrease with the increase of indium content in the studied crystals.Article Citation - WoS: 4Citation - Scopus: 4Thermally Controlled Band Gap Tuning in Cuo Nano Thin Films for Optoelectronic Applications(indian Assoc Cultivation Science, 2024) Delice, S.; Isik, M.; Gasanly, N. M.Temperature dependency of band gap in CuO nano thin films has been investigated by virtue of transmission experiments at different temperatures. Structural and morphological characterization were achieved using X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. Analysis on the XRD diffractogram revealed the presence of monoclinic structure for the CuO. Average crystallite size was determined as 17.8 nm. Absorption characteristics in between 10 and 300 K were presented in the wavelength range of 360-1100 nm. The band gap of the CuO was found to be similar to 2.17 eV at 300 K using Tauc and spectral derivative methods. This value increased to similar to 2.24 eV at 10 K. Both methods showed that the band gap extended with decreasing temperature. Temperature dependency of the band gap was studied using Varshni relation. The band gap at absolute temperature, variation of the band gap with temperature and Debye temperature were calculated as 2.242 +/- 0.002 eV, - 5.4 +/- 0.2 x 10(-4) eV/K and 394 +/- 95 K, respectively.Article Low Temperature Thermoluminescence of Quaternary Thallium Sulfide Tl4inga3<(indian Assoc Cultivation Science, 2015) Delice, S.; Isik, M.; Bulur, E.; Gasanly, N. M.Thermoluminescence measurements have been carried out on Tl4InGa3S8 single crystals in the temperature range of 10-300 K at various heating rates. The observed thermoluminescence spectra have been analyzed applying many methods like curve fitting, initial rise, peak shape and heating rate methods. Thermal cleaning method has been performed on the observed thermoluminescence glow curve to separate the overlapped peaks. Three distinctive trapping centers with activation energies of 13, 44 and 208 meV have been revealed from the results of the analysis. Heating rate dependence and traps distribution investigations have been also undertaken on the most intensive peak. The thermoluminescence mechanisms in the observed traps have been attributed to first order kinetics (slow retrapping) on the strength of the consistency between theoretical assumptions for slow retrapping process and experimental outcomes.

