Search Results

Now showing 1 - 10 of 15
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Design of the Zns/Ge pn Interfaces as Plasmonic, Photovoltaic and Microwave Band Stop Filters
    (Elsevier Science Bv, 2017) Alharbi, S. R.; Qasrawi, A. F.
    In the current work, we report and discuss the features of the design of a ZnS (300 nm)/Ge (300 nm)/GaSe (300 nm) thin film device. The device is characterized by the X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy (EDS), optical spectroscopy, microwave power spectroscopy and light power dependent photoconductivity. While the X-ray diffraction technique revealed a polycrystalline ZnS coated with two amorphous layers of Ge and GaSe, the hot probe tests revealed the formation of pn interface. The optical spectra which were employed to reveal the conduction and valence band offsets at the ZnS/Ge and Ge/GaSe interface indicated information about the dielectric dispersion at the interface. The dielectric spectra of the ZnS/Ge/GaSe heterojunction which was modeled assuming the domination of surface plasmon interactions through the films revealed a pronounced increase in the drift mobility of free carriers in the three layers compared to the single and double layers. In the scope of the fitting parameters, a wave trap that exhibit filtering properties at notch frequency of 2.30 GHz was designed and tested. The ac signals power spectrum absorption reached similar to 99%. In addition, the photocurrent analysis on the ZnS/Ge/GaSe interface has shown it is suitability for photovoltaic and photosensing applications. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
  • Article
    Citation - WoS: 5
    Citation - Scopus: 4
    Thickness and Annealing Effects on the Structural and Optical Conductivity Parameters of Zinc Phthalocyanine Thin Films
    (inst Materials Physics, 2020) Alharbi, S. R.; Qasrawi, A. F.; Khusayfan, N. M.; Department of Electrical & Electronics Engineering
    In this work, the effects of the thin film thicknesses on the structural, optical absorption, energy band gap, dielectric spectra and optical conductivity parameters of the Zinc phthalocyanine thin films are considered. Thin films of ZnPc of thicknesses of 50-600 nm which are coated onto glass substrates are observed to exhibit amorphous nature of growth. The polycrystalline monoclinic ZnPc phase of the films is obtained via annealing the films at 200 degrees C in a vacuum atmosphere. Increasing the ZnPc films thickness shrunk the energy band gap in the B- and Q- bands and decreased both of the optical conductivities and free holes density in the Q-band. The increase in the film thickness is also observed to decrease the plasmon frequency and the drift mobility of holes in the films. The highest dielectric constant is obtained for films of thicknesses of 100 nm. The annealing process enhanced the optical absorption, redshifts the energy band gap value and the critical energy of the absolute maxima of dielectric constant. In addition, while the heat treatment enhanced both of the scattering times at femtosecond level and the drift mobility, it reduced the free holes density, and the plasmon frequency.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Structural and Optical Properties of the Zns/Gase Heterojunctions
    (Iop Publishing Ltd, 2017) Alharbi, S. R.; Abdallaha, Maisam M. A.; Qasrawi, A. F.
    In the current work, the ZnS/GaSe thin film heterojunction interfaces are experimentally designed and characterized by means of x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy and optical spectroscopy techniques. The heterojunction is observed to exhibit physical nature of formation with an induced crystallization of GaSe by the ZnS substrate. For this heterojunction, the hot probe technique suggested the formation of a p-ZnS/n-GaSe interface. In addition, the designed energy band diagram of the heterojunction which was actualized with the help of the optical spectrophotometric data analysis revealed a respective conduction and valence band offsets of 0.67 and 0.73 eV. On the other hand, the dielectric dispersion analysis and modeling which was studied in the frequency range of 270-1000 THz, have shown that the interfacing of the ZnS with GaSe strongly affects the properties of ZnS as it reduces the number of free carriers, shifts down the plasmon frequency, increases the charge carrier scattering time and results in higher values of drift mobility at Terahertz frequencies.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    Optical and Electrical Performance of Yb/Inse Interface
    (Elsevier Sci Ltd, 2016) Alharbi, S. R.; Qasrawi, A. F.
    In this study a 300 nm ytterbium transparent thin film is used as substrate to a 300 nm thick InSe thin film. The optical transmittance, reflectance and absorbance of the glass/InSe and Yb/InSe films are measured and analyzed. The optical data allowed determining the effects of the Yb layer on the energy band gap, on the dielectric and on optical conductivity spectra. The band gap of the InSe films shrunk from 2.38/139 to 1.90/1.12 eV upon Yb layer interfacing leading to a band offset of 0.48/0.27 eV. On the other hand, the modeling of the optical conductivity in accordance with the Lorentz theory revealed a free carrier scattering time, carrier density and mobility of 0.225 (fs), 3.0 x 10(19)(cm(-3)) and 2.53 cm(2)/Vs for the Yb/InSe interface, respectively. As these values seem to be promising for employing the Yb/InSe interface in thin film transistor technology, the current voltage characteristics of Yb/InSe/C Schottky diode were recorded and analyzed. The electrical analysis revealed the removal of the tunneling channels by using Yb in place of Al. In addition, the "on/off' current ratios, the Schottky barrier height and the switching voltage of the Yb/InSe/C device are found to be 18.8, 0.76/0.60 eV and 0.53 V, respectively. (C) 2015 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Gold and Ytterbium Interfacing Effects on the Properties of the Cdse/Yb Nanosandwiched Structures
    (Elsevier Science Bv, 2018) Alharbi, S. R.; Qasrawi, A. F.
    Owing to the performance of the CdSe as an optoelectronic material used for the production of quantum dots, photosensors and wave traps we here, in this article, report the enhancements in structural and electrical properties that arises from the nanosandwiching of a 40 nm thick Yb film between two films of CdSe (CYbC-40). The CdSe films which were deposited onto glass, Yb and Au substrates are characterized by X-ray diffraction, temperature dependent electrical conductivity and impedance spectroscopy measurements in the frequency range of 10-1800 MHz. The analysis of the XRD patterns have shown that the glass/CdSe/Yb/CdSe films exhibit larger grain size and lower strain, defect density and lower stacking faults compared to the not sandwiched CdSe. In addition, it was observed that the Yb shifts the donor states of the n-type CdSe from 0.44 to 0.29 eV leading to a modification in the built in voltage of the material. On the other hand, the design of the energy band diagram has shown the ability of the formation of the Au/CYbC-40/Yb as Schottky (SB) and the Au/CYbC-40/Au as back to back Schottky barriers (BBSB). While the SB device show low band pass filter characteristics, the BBSB device performed as band stop filters. The BBSB device exhibited negative capacitance effects with filtering features that reveal a return loss of 42 dB at similar to 1440 MHz.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Effects of Ge Substrate on the Structural and Optical Conductivity Parameters of Bi2o3< Thin Films
    (Elsevier Gmbh, 2019) Alharbi, S. R.; Qasrawi, A. F.
    In this article the structural, optical and dielectric properties of a 200 nm thick Bi2O3 thin films which are deposited onto amorphous germanium substrate are reported. Both of the Ge and Bi2O3 thin films are prepared by the thermal evaporation technique under vacuum pressure of 10 s mbar. Bi2O3 thin films are found to prefer the monoclinic nature of structure with larger values of microstrain, dislocation density, stacking faults and smaller grain sizes upon replacement of the glass substrate by germanium. Optically, significant redshift in the energy band gap is observed when the films are grown onto Ge. The Ge/Bi2O3 heterojunctions exhibit a conduction and valence band offsets of value of 0.81 and 1.38 eV, respectively. In addition to the enhancement in the dielectric constant near the IR region, the Drude-Lorentz modeling of the Ge/Bi2O3 heterojunctions has shown remarkable effect of the Ge substrate on the optical conductivity parameters of Bi2O3. Particularly, the drift mobility increased by about one order of magnitude, the free hole density decreased by (similar to)24 times and the plasmon frequency ranges extended from 5.21 to 11.0 GHz to 2.59-12.80 GHz when germanium substrate is used. The optical features of the heterojunction nominate it for visible light communication technology.
  • Article
    Citation - Scopus: 1
    Structural and Electrical Performance of Moo3 Films Designed as Microwave Resonators
    (inst Materials Physics, 2020) Al Garni, S. E.; Qasrawi, A. F.; Alharbi, S. R.; Department of Electrical & Electronics Engineering
    In this work, the effect of the insertion of lithium slabs of thicknesses of 50 nm between stacked layers of MoO3 is considered. Stacked layers of MoO3 comprising lithium slabs are prepared by the thermal evaporation technique onto Au substrates under vacuum pressure of 10(-5) mbar. The effects of Li slabs are explored by the X-ray diffraction, scanning electron microscopy, current-voltage characteristics and impedance spectroscopy techniques in the frequency domain of 0.01-1.80 GHz. While the presence of Li slabs did not alter the amorphous nature of structure, it forced the growth of rod-like grains of diameters of 100-160 nm and lengths of 1.5 mu m. Electrically, the presence of Li in the samples enhanced the rectifying properties of the devices and force reverse to forward current ratios larger than 60 times. Li slabs also controlled the negative capacitance effect and resonance -antiresonance regions in the Au/MoO3/MoO3/C stacked layers. While the Au/MoO3/MoO3/C devices displayed high conductance and low impedance values in the studied frequency domain, the Au/MoO3/Li/MOO3/C devices exhibited low conductance and high impedance mode in the frequency domain of 0.01-0.59 GHz. It is also found that the presence of Li slabs improved the performance of the devices through driving it to exhibit lower reflection coefficient and high return loss values near 0.80 GHz. The features of the devices nominate them for use as RF-Microwave traps or resonators.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Optical Dynamics in the Ag/Α-ga2< Layer System
    (Elsevier Sci Ltd, 2018) Alharbi, S. R.; Qasrawi, A. F.
    In this work, thin films of Ga2S3 are deposited onto 150 nm thick transparent Ag substrate by the physical vapor deposition technique under vacuum pressure of 10(-5) mbar. The films are studied by the X-ray diffraction and optical spectrophotometry techniques. It is found that the Ag substrate induced the formation of the monoclinic alpha-Ga2S3 polycrystals. The transparent Ag substrate also changed the preferred optical transition in Ga2S3 from direct to indirect It also increased the light absorption by 79 and 23 times at incident light energies of 2.01 and 2.48 eV, respectively. In addition, a red shift in all types of optical transitions is observed. Some the extended energy band tails of Ag appears to form interbands in the band gap of Ga2S3. These interbands strongly attenuated the dielectric and optical conduction parameters. Particularly, an enhancement in the dielectric constant values and response to incident electromagnetic field is observed. The Drude-Lorentz modeling of this interface has shown that the free carrier density, drift mobility, plasmon frequency and reduced electron-plasmon frequency in Ga2S3 increases when the Ag substrate replaced the glass or other metals like Yb, Al and Au. The nonlinear optical dynamics of the Ag/Ga2S3 are promising as they indicate the applicability of this interface for optoelectronic applications.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Characterization of the Nanosandwiched Ga2s3< Interfaces as Microwave Filters and Thermally Controlled Electric Switches
    (Elsevier Gmbh, 2018) Alharbi, S. R.; Nazzal, Eman O.; Qasrawi, A. F.
    In this work, an indium layer of 50 nm thicknesses is sandwiched between two 500 nm thick Ga2S3 layers. The effect of indium nansandwiching on the composition, structure, morphology, light absorbability, capacitance and reactance spectra, and temperature dependent electrical conductivity of the Ga2S3 films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray spectroscopy, Raman spectroscopy, visible light spectrophotometry, impedance spectroscopy and current voltage characteristics. While the nansandwiched films are observed to exhibit an amorphous nature of structure with indium content of Owing to the nucleation mechanisms that take place during the film growth, the accumulation of some unit cells in groups to form grains should be a significant reason for the existence of many different sizes of grains in the nanosand-wiched films (Alharbi and Qasrawi, 2016). 0, the Raman spectra displayed three vibrational modes at 127.7,145.0 and 274.3 cm(-1). It was also observed that the indium insertion in the structure of the Ga2S3 shrinks the energy band gap by 0.18 eV. The nanosandwiched films are observed to exhibit a semiconductor metal (SM) transition at 310 K. The SM transition is associated with thermal hysteresis that exhibited a maximum value of 16% at 352 K. This behavior of the nanosandwiched films nominate it for use as thermally controlled electric switches. In addition, the impedance spectral analysis in the range of 10-1800 MHz has shown a capacitance tunability of more than 70%. The measurements of the wave trapping property displayed a bandpass/reject filter characteristics above 1.0 GHz which allow using the Ga2S3/In/Ga2S3 thin films as microwave resonator. (C) 2017 Elsevier GmbH. All rights reserved.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 21
    Engineering the Optical and Dielectric Properties of the Ga2s3< Nanosandwiches Via Indium Layer Thickness
    (Springer, 2018) Nazzal, Eman O.; Qasrawi, A. F.; Alharbi, S. R.
    In this study, the effect of the nanosandwiched indium slab thickness (20-200 nm) on the performance of the Ga2S3/In/Ga2S3 interfaces is explored by means of X-ray diffraction, Raman spectroscopy, and optical spectroscopy techniques. The indium slab thickness which was varied in the range of 20-200 nm is observed to enhance the visible light absorbability of the Ga2S3 by 54.6 times, engineered the energy band gap in the range of 3.7-1.4 eV and increases the dielectric constant without, significantly, altering the structure of the Ga2S3. The broad range of the band gap tunability and the increased absorbability nominate the Ga2S3 thin films for photovoltaic applications. In addition, the dielectric spectral analysis and modeling have shown that a wide variety in the plasmon resonant frequency could be established within the Ga2S3/In/Ga2S3 trilayers. The plasmon frequency engineering in the range of 0.56-2.08 GHz which is associated with drift mobility of 12.58-5.76 cm(2)/Vs and electron scattering time at femtosecond level are promising for the production of broad band high frequency microwave filters.