Characterization of the nanosandwiched Ga<sub>2</sub>S<sub>3</sub>/In/Ga<sub>2</sub>S<sub>3</sub> interfaces as microwave filters and thermally controlled electric switches

No Thumbnail Available

Date

2018

Authors

Qasrawı, Atef Fayez Hasan

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this work, an indium layer of 50 nm thicknesses is sandwiched between two 500 nm thick Ga2S3 layers. The effect of indium nansandwiching on the composition, structure, morphology, light absorbability, capacitance and reactance spectra, and temperature dependent electrical conductivity of the Ga2S3 films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray spectroscopy, Raman spectroscopy, visible light spectrophotometry, impedance spectroscopy and current voltage characteristics. While the nansandwiched films are observed to exhibit an amorphous nature of structure with indium content of Owing to the nucleation mechanisms that take place during the film growth, the accumulation of some unit cells in groups to form grains should be a significant reason for the existence of many different sizes of grains in the nanosand-wiched films (Alharbi and Qasrawi, 2016). 0, the Raman spectra displayed three vibrational modes at 127.7,145.0 and 274.3 cm(-1). It was also observed that the indium insertion in the structure of the Ga2S3 shrinks the energy band gap by 0.18 eV. The nanosandwiched films are observed to exhibit a semiconductor metal (SM) transition at 310 K. The SM transition is associated with thermal hysteresis that exhibited a maximum value of 16% at 352 K. This behavior of the nanosandwiched films nominate it for use as thermally controlled electric switches. In addition, the impedance spectral analysis in the range of 10-1800 MHz has shown a capacitance tunability of more than 70%. The measurements of the wave trapping property displayed a bandpass/reject filter characteristics above 1.0 GHz which allow using the Ga2S3/In/Ga2S3 thin films as microwave resonator. (C) 2017 Elsevier GmbH. All rights reserved.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Gallium sulfide, Optical materials, Coating, Microwave resonator, Switches

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q2

Scopus Q

Source

Volume

156

Issue

Start Page

93

End Page

98

Collections