4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 4Citation - Scopus: 4Physical Characterization of Thermally Evaporated Sn-Sb Thin Films for Solar Cell Applications(Springer Heidelberg, 2023) Bektas, Tunc; Surucu, Ozge; Terlemezoglu, Makbule; Parlak, MehmetThe substitution of Sb in binary SnSe structure may lead to tailoring the physical properties of both SnSe and SbSe, promising absorber layers for thin film solar cells. The resulting Sn-Sb-Se structure could be an outstanding material for photovoltaic applications. In this study, Sn-Sb-Se thin films were deposited by thermal evaporation, and the effect of annealing on the films' structural, optical, and electrical properties were reported. XRD measurement shows that annealing at 300 degrees C yields the best crystalline quality, and structural parameters were calculated using XRD data. SEM and AFM measurements indicate deformation in the film surface after annealing at 400 degrees C. UV-Vis spectroscopy measurement provides a high absorption coefficient which indicates a direct band gap. The band gap and activation energies of the as-grown sample were found as 1.59 eV and 106.1 meV, respectively. The results of SEM, AFM, XRD, Raman, UV-Vis spectroscopy and temperature-dependent photoconductivity measurements were discussed throughout the paper.Article Citation - WoS: 1Citation - Scopus: 1Material Characterization of Thermally Evaporated Znsn2te4< Thin Films(Elsevier Gmbh, Urban & Fischer verlag, 2019) Gullu, H. H.Polycrystalline and stoichiometric ZnSn2Te4 (ZST) thin films were deposited on glass substrates by sequential evaporation of elemental powder sources. The deposited films were annealed in nitrogen atmosphere at annealing temperature ranging 100-300 degrees C. Under post-annealing treatments, the composition, structural, surface morphological, optical and electrical characteristics of the films were investigated. Annealing treatments lead to maintain the structural characteristics with the possible change in atomic concentration of the constituent elements in limit of detection and crystallinity of the films increased with increasing annealing temperature. Grainy surface morphology was observed in as-grown and annealed films and densely packed appearance of the surface of the samples indicates uniform deposition of the film over the entire substrate surface. Under the aim of visible light harvesting in the applications of thin film photovoltaics, normal-incidence transmittance measurements were performed and the direct band gap values were found in the range of 1.8-2.1 eV. Temperature dependent conductivity characteristics of the films were investigated under dark condition and the observed conductivity profiles were found in Arrhenius behavior with temperature dominated by the thermionic emission model.Article Citation - WoS: 3Citation - Scopus: 3Fabrication of Cdsexte1-X Thin Films by Sequential Growth Using Double Sources(Elsevier, 2021) Demir, M.; Gullu, H. H.; Terlemezoglu, M.; Parlak, M.CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.Article Citation - WoS: 7Citation - Scopus: 7Annealing Effect on the Low Temperature Thermoluminescence Properties of Gase Single Crystals(Elsevier Science Bv, 2014) Isik, M.; Hadibrata, W.; Gasanly, N. M.Trapping centers in as-grown GaSe single crystals have been investigated by thermoluminescence (TL) measurements in the temperature range of 30-300 K. The analysis of the observed peaks in TL glow curve to determine the activation energies of the associated centers were accomplished using curve fitting, initial rise and peak shape methods. Activation energies of the revealed four trapping centers obtained from various methods were in good agreement with each other on the energy values of 0.14, 0.18, 0.24 and 037 eV. The annealing effect on the TL properties of the GaSe single crystals was also studied for the annealing temperature of 500 degrees C. It was observed that annealing significantly decreased the U intensity and shifted the observed peaks to lower temperature resulting with smaller activation energy values. The distribution of the trapping centers with most intensive peak was also studied on both as-grown and annealed crystals. (C) 2014 Elsevier B.V. All rights reserved.

