Material Characterization of Thermally Evaporated Znsn<sub>2</Sub>te<sub>4< Thin Films

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh, Urban & Fischer verlag

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

Polycrystalline and stoichiometric ZnSn2Te4 (ZST) thin films were deposited on glass substrates by sequential evaporation of elemental powder sources. The deposited films were annealed in nitrogen atmosphere at annealing temperature ranging 100-300 degrees C. Under post-annealing treatments, the composition, structural, surface morphological, optical and electrical characteristics of the films were investigated. Annealing treatments lead to maintain the structural characteristics with the possible change in atomic concentration of the constituent elements in limit of detection and crystallinity of the films increased with increasing annealing temperature. Grainy surface morphology was observed in as-grown and annealed films and densely packed appearance of the surface of the samples indicates uniform deposition of the film over the entire substrate surface. Under the aim of visible light harvesting in the applications of thin film photovoltaics, normal-incidence transmittance measurements were performed and the direct band gap values were found in the range of 1.8-2.1 eV. Temperature dependent conductivity characteristics of the films were investigated under dark condition and the observed conductivity profiles were found in Arrhenius behavior with temperature dominated by the thermionic emission model.

Description

Gullu, Hasan Huseyin/0000-0001-8541-5309

Keywords

Thin film, Thermal evaporation, Annealing

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Source

Volume

178

Issue

Start Page

45

End Page

50

Collections