Fabrication of CdSeXTe1-x thin films by sequential growth using double sources

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.

Description

Demir, Medine/0000-0002-7364-7185

Keywords

CdSexTe1-x, Thin film, Evaporation, Annealing

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Scopus Q

Source

Volume

619

Issue

Start Page

End Page

Collections