1. Home
  2. Browse by Author

Browsing by Author "Isik, M."

Filter results by typing the first few letters
Now showing 1 - 20 of 138
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Absorption Edge and Optical Constants of Tl2ga2< Crystals From Reflection and Transmission, and Ellipsometric Measurements
    (Elsevier, 2012) Isik, M.; Gasanly, N. M.
    The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies. Spectroscopic ellipsometry measurements on Tl2Ga2S3Se crystals were carried out on the layer-plane (0 0 1) surfaces with light polarization E perpendicular to c* in the 1.20-4.70 eV spectral range at room temperature. The real and imaginary parts of the dielectric function as well as refractive and absorption indices were found as a result of analysis of ellipsometric data. The Wemple-DiDomenico single-effective-oscillator model was used to study the dispersion of the refractive index in the below band gap energy range. The structures of critical points have been characterized from the second derivative spectra of the dielectric function. The analysis revealed four interband transition structures with 3.14, 3.40, 3.86 and 4.50 eV critical point energies. (C) 2012 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Analysis of Temperature-Dependent Transmittance Spectra of Zn0.5in0.5< (zis) Thin Films
    (Springer, 2019) Isik, M.; Gullu, H. H.; Delice, S.; Gasanly, N. M.; Parlak, M.
    Temperature-dependent transmission experiments of ZnInSe thin films deposited by thermal evaporation method were performed in the spectral range of 550-950nm and in temperature range of 10-300K. Transmission spectra shifted towards higher wavelengths (lower energies) with increasing temperature. Transmission data were analyzed using Tauc relation and derivative spectroscopy. Analysis with Tauc relation was resulted in three different energy levels for the room temperature band gap values of material as 1.594, 1.735 and 1.830eV. The spectrum of first wavelength derivative of transmittance exhibited two maxima positions at 1.632 and 1.814eV and one minima around 1.741eV. The determined energies from both methods were in good agreement with each other. The presence of three band gap energy levels were associated to valence band splitting due to crystal-field and spin-orbit splitting. Temperature dependence of the band gap energies were also analyzed using Varshni relation and gap energy value at absolute zero and the rate of change of gap energy with temperature were determined.
  • Loading...
    Thumbnail Image
    Article
    Analysis of Thermoluminescence Glow Peaks in Β-Irradiated Tlgases Crystals
    (Polish Acad Sciences inst Physics, 2016) Isik, M.; Yildirim, T.; Gasanly, N. M.
    Thermoluminescence properties of TlGaSeS layered single crystals were investigated in the temperature range of 280-720 K. Thermoluminescence glow curve exhibited three peaks with maximum temperatures of approximate to 370, 437, and 490 K. Curve fitting, initial rise and peak shape methods were used to determine the activation energies of the trapping centers. All applied methods resulted with energies around 0.82, 0.91, and 0.99 eV. Dose dependence of the thermoluminescence intensity was also examined for the doses in the range of 0.7-457.6 Gy. Peak maximum intensity of the observed peak around 370 K showed an increase up to a certain dose and then a decrease at higher doses. This non-monotonic dose dependence was discussed under the light of a reported model in which different kinds of competition between radiative and nonradiative recombination centers during excitation or heating stages of the thermoluminescence process are explained.
  • Loading...
    Thumbnail Image
    Article
    Annealing Effect on Dark Electrical Conductivity and Photoconductivity of Ga-In Thin Films
    (Polish Acad Sciences inst Physics, 2018) Isik, M.; Gullu, H. H.
    Dark-conductivity and photoconductivity properties of thermally evaporated Ga-In-Se (GIS) thin films were investigated in the temperature range of 80-430 K. All measurements were performed on as-grown and annealed GIS thin films at 300 and 400 degrees C to get information about the effect of the annealing temperature on the conductivity properties. Room temperature conductivity was obtained as 1.8 x 10(-8) Omega(-1) cm(-1) for as-grown films and increased to 3.6 x 10(-4) Omega(-1) cm(-1) for annealed films at 400 degrees C. Analysis of the dark-conductivity data of as-grown films revealed nearly intrinsic type of conductivity with 1.70 eV band gap energy. Temperature dependent dark conductivity curves exhibited two regions in the 260-360 and 370-430 K for both of annealed GIS films. Conductivity activation energies were found as 0.05, 0.16 and 0.05, 0.56 eV for films annealed at temperatures of 300 and 400 degrees C, respectively. The dependence of photoconductivity on illumination intensity was also studied in the range from 17 to 113 mW/cm(2).
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Annealing Effect on the Low Temperature Thermoluminescence Properties of Gase Single Crystals
    (Elsevier Science Bv, 2014) Isik, M.; Hadibrata, W.; Gasanly, N. M.
    Trapping centers in as-grown GaSe single crystals have been investigated by thermoluminescence (TL) measurements in the temperature range of 30-300 K. The analysis of the observed peaks in TL glow curve to determine the activation energies of the associated centers were accomplished using curve fitting, initial rise and peak shape methods. Activation energies of the revealed four trapping centers obtained from various methods were in good agreement with each other on the energy values of 0.14, 0.18, 0.24 and 037 eV. The annealing effect on the TL properties of the GaSe single crystals was also studied for the annealing temperature of 500 degrees C. It was observed that annealing significantly decreased the U intensity and shifted the observed peaks to lower temperature resulting with smaller activation energy values. The distribution of the trapping centers with most intensive peak was also studied on both as-grown and annealed crystals. (C) 2014 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Characteristic Features of Thermoluminescence in Neodymium-Doped Gallium Sulfide
    (Wiley, 2018) Guler, I.; Isik, M.; Ahmedova, F.; Guseinov, A.; Gasanly, N.
    The thermoluminescence (TL) of neodymium-doped gallium sulfide (GaS:Nd) single crystals was measured from 10 K to room temperature with various heating rates between 0.2 and 1.0 K/sec. Two peaks centered at 70.9 K and 116.0 K were observed when using a heating rate of 0.8 K/sec. Initial rise and curve fitting methods were used to obtain information on trap activation energies. Activation energies of 94 and 216 meV were found for two analyzable peaks. The heating rate dependencies of TL intensities revealed that one of the observed peaks showed normal behavior according to the one trap-one recombination model, whereas the other model showed anomalous heating rate behavior. TL experiments were also carried out at different illumination temperatures from 10 to 32 K; maximum peak temperature remained almost the same at various illumination temperatures. This behavior indicated that the revealed trapping centers are single, discrete levels. The TL glow curves of undoped GaS crystals were also investigated and the effect of Nd doping on the TL characteristics of crystals is discussed in the manuscript.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Characterization of Bi12sio20< Single Crystal: Understanding Structural and Thermal Properties
    (Springer Heidelberg, 2024) Altuntas, G.; Isik, M.; Gasanly, N. M.
    This study presents a thorough examination of the structural and thermal characteristics of Bi12SiO20 crystal. X-ray diffraction (XRD) analysis was employed to investigate the crystallographic structure, while scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were utilized to ascertain morphological features and elemental composition, respectively. The XRD spectrum exhibited numerous peaks corresponding to the cubic crystalline structure. Thermal behavior was investigated through thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Within the crystal, negligible weight loss was observed up to 750 degrees C, followed by weight loss processes occurring in the temperature ranges of 750-919 degrees C and above 919 degrees C. The 2% weight loss in the range of 750-919 degrees C was associated with the decomposition process, and the activation energy of this process was found to be 199 kJ/mol considering Coats-Redfern expression. A significant weight loss was observed in the region above 919 C-o and was associated with the decomposition of the Bi12SiO20 compound and/or the melting processes of the components of the Bi12SiO20 compound. Three endothermic peaks were observed in the DTA plot. Additionally, DSC measurements conducted under varied heating rates indicated endothermic crystallization process around 348 degrees C, with an activation energy of 522 kJ/mol determined through the Kissenger equation. These findings present valuable details regarding the crystal's structural configuration, morphological attributes, and decomposition/phase transitions, thereby illuminating its potential applications across various fields.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    Citation - Scopus: 2
    Characterization of Linear and Nonlinear Optical Properties of Nabi(wo4)2 Crystal by Spectroscopic Ellipsometry
    (Elsevier, 2024) Isik, M.; Işık, Mehmet; Guler, I.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    NaBi(WO4)2 compound has been a material of considerable attention in optoelectronic applications. The present research, in which we examined the linear and nonlinear optical properties of NaBi(WO4)2 crystal using the spectroscopic ellipsometry method, elucidates the optical behavior of the crystal in detail. Our work provides a sensitive approach to determine the spectral characteristic of the crystal. The spectral dependence of various optical parameters such as refractive index, extinction coefficient, dielectric function and absorption coefficient was reported in the range of 1.2-5.0 eV. Optical values such as bandgap energy, critical point energy, single oscillator parameters were obtained as a result of the analyses. In addition to linear optical properties, we also investigated the nonlinear optical behavior of NaBi(WO4)2 and shed new light on the potential applications of the crystal. Absorbance and photoluminescence spectra of the crystal were also reported to characterize optical, electronic and emission behavior of the compound. Our findings may form the basis for a number of technological applications such as optoelectronic devices, frequency conversion, and optical sensors. This research contributes to a better understanding of the optical properties of NaBi(WO4)2 crystal, highlighting the material's role in future optical and electronic technologies.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Characterization of Trap Centers in Gd2o3< Nanoparticles by Low Temperature Thermoluminescence Measurements
    (Elsevier Gmbh, 2018) Delice, S.; Isik, M.; Gasanly, N. M.
    Trapping centers in Gd2O3 nanoparticles were investigated using thermoluminescence (TL) measurements in the below room temperature region of 10-280 K. Seven peaks having peak maximum temperatures between 30 and 252 K were observed in the TL spectra measured at constant heating rate of 0.3 K/s. Activation energies, order of kinetics and frequency factors were reported using three different analysis techniques: curve fitting, initial rise and peak shape methods. Activation energies of the trapping centers were found between 0.012 eV and 0.79 eV. Most of the TL transitions associated with observed peaks were found as dominated by mixed order of kinetics. Structural characterization of used nanoparticles was achieved using x-ray diffraction and scanning electron microscopy experiments. (C) 2017 Elsevier GmbH. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Compositional Dependence of Optical Modes Frequencies in T1gax< Layered Mixed Crystals (0 ≤ x ≤ 1)
    (Polish Acad Sciences inst Physics, 2014) Isik, M.; Gasanly, N. M.; Korkmaz, F.
    The infrared transmittance and Raman scattering spectra in TlGaxIn1-xS2 (0 <= x <= 1) layered mixed crystals grown by the Bridgman method were studied in the frequency ranges of 400-2000 and 250-400 cm(-1), respectively. The bands observed at room temperature in IR transmittance spectra of TlGaxIn1-xS2 were interpreted in terms of multiphonon absorption processes. The dependences of the frequencies of IR- and Raman-active modes on the composition of TlGaxIn1-xS2 mixed crystals were also established. The structural characterization of the mixed crystals was investigated by means of X-ray diffraction measurements and compositional dependence of lattice parameters was revealed.
  • Loading...
    Thumbnail Image
    Article
    Cu Doping of Sb2Se3 Thin Films Via Thermal Evaporation: Tailoring Structural and Optical Properties for Enhanced Photovoltaic Performance
    (Elsevier, 2025) Isik, M.; Surucu, O.; Bektas, T.; Parlak, M.
    In this study, Cu-doped Sb2Se3 thin films were successfully grown using the thermal evaporation method, and their structural and optical properties were systematically investigated. Three different samples with thickness of similar to 400 nm were analyzed: undoped, 1 %, and 2 % Cu-doped Sb2Se3. X-ray diffraction (XRD) analysis revealed well-defined peaks, confirming the orthorhombic crystalline nature of the films. Scanning electron microscopy (SEM) images showed a uniform surface morphology without any significant defects. The optical properties were examined through transmission measurements. The band gap energy determined by Tauc analysis decreased from 1.27 to 1.21 eV as the Cu doping increased from 0 % to 2 %, indicating that Cu incorporation modifies the electronic structure of Sb2Se3. Similarly, Urbach energy increased from 0.148 to 0.168 eV depending on Cu content, suggesting a rise in localized states due to increased structural disorder. These findings demonstrate that Cu doping influences the electronic structure and defect states of Sb2Se3, which is crucial for optimizing its performance in photovoltaic and optoelectronic applications.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 15
    Citation - Scopus: 15
    Deep Traps Distribution in Tlins2 Layered Crystals
    (Polish Acad Sciences inst Physics, 2009) Isik, M.; Gasanly, N. M.; Ozkan, H.
    The trap centers and distributions in TlInS2 were studied in the temperature range of 100-300 K by using thermally stimulated currents technique. Experimental evidence was found for the presence of three trapping centers with activation energies 400, 570, and 650 meV. Their capture cross-sections were determined as 6.3 x 10(-16), 2.7 x 10(-12), and 1.8 x 10(-11) cm(2), respectively. It was concluded that in these centers retrapping is negligible as confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. An exponential distribution of hole traps was revealed from the analysis of the thermally stimulated current data obtained at different light excitation temperatures. This experimental technique provided a value of 800 meV/decade for the trap distribution.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Defect Characterization in Bi12geo20< Single Crystals by Thermoluminescence
    (Elsevier, 2021) Delice, S.; Isik, M.; Sarigul, N.; Gasanly, N. M.
    Bi12GeO20 single crystal grown by Czochralski method was investigated in terms of thermoluminescence (TL) properties. TL experiments were performed for various heating rates between 1 and 6 K/s in the temperature region of 300-675 K. One TL peak with peak maximum temperature of 557 K was observed in the TL spectrum as constant heating rate of 1 K/s was employed. Curve fitting, initial rise and variable heating rate methods were applied to calculate the activation energy of trap level corresponding to this TL peak. Analyses resulted in a presence of one trap center having mean activation energy of 0.78 eV. Heating rate characteristics of revealed trap center was also explored and theoretically well-known behavior that TL intensity decreases and peak maximum temperature increases with heating rates was observed for the trap level. Distribution of trapping levels was studied by thermally cleaning process for different T-stop between 425 and 525 K. Quasi-continuously distributed trapping levels were revealed with mean activation energies ranging from 0.78 to 1.26 eV. Moreover, absorption analysis revealed an optical transition taking place between a defect level and conduction band with an energy difference of 2.51 eV. These results are in good agreement for the presence of intrinsic defects above valence band in Bi12GeO20 crystals.
  • Loading...
    Thumbnail Image
    Article
    Defect Characterization of Ga4se3< Layered Single Crystals by Thermoluminescence
    (indian Acad Sciences, 2016) Isik, M.; Delice, S.; Gasanly, N.
    Trapping centres in undoped Ga4Se3S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low-temperature range of 15-300 K. After illuminating the sample with blue light (similar to 470 nm) at 15 K, TL glow curve exhibited one peak around 74 K when measured with a heating rate of 0.4 K/s. The results of the various analysis methods were in good agreement about the presence of one trapping centre with an activation energy of 27 meV. Analysis of curve fitting method indicated that mixed order of kinetics dominates the trapping process. Heating rate dependence and distribution of the traps associated with the observed TL peak were also studied. The shift of peak maximum temperature from 74 to 113 K with increasing rate from 0.4 to 1.2 K/s was revealed. Distribution of traps was investigated using an experimental technique based on cleaning the centres giving emission at lower temperatures. Activation energies of the levels were observed to be increasing from 27 to 40 meV by rising the stopping temperature from 15 to 36 K.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 11
    Citation - Scopus: 12
    The Defect State of Yb-Doped Zno Nanoparticles Using Thermoluminescence Study
    (Elsevier Sci Ltd, 2019) Isik, M.; Gasanly, N. M.
    Shallow trapping centers in Yb-doped ZnO nanoparticles were determined using thermoluminescence (TL) measurements applied in the 10-300 K temperature region. Undoped and Yb-doped ZnO nanoparticles were synthesized by sol-gel method. TL glow curve of undoped nano-particles presented three peaks around 56, 108 and 150 K whereas one additional peak around 83 K was observed in the TL curve of Yb-doped ZnO nano-particles. The increase of Yb concentration in the nanoparticles increased the TL intensity of this additional peak. Activation energies of interstitial defect centers were found as 20, 82 and 105 meV while energy of trapping center existing due to Yb-doping was obtained as 72 meV using curve fitting and initial rise methods.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Determination of Mechanical Properties of Bi12tio20< Crystals by Nanoindentation
    (Elsevier Sci Ltd, 2022) Isik, M.; Gasanly, N. M.; Rustamov, F. A.
    Bi12TiO20 (BTO) single crystal was grown by Czochralski method and investigated mechanically by nano-indentation measurements. X-ray diffraction pattern of the crystal presented one intensive peak around 37.95 degrees associated with (330) plane of cubic crystalline structure. Nanoindentation experiments were performed at various loads between 5 and 100 mN. Hardness and Young's modulus of the crystal were determined by Oliver-Pharr method. The hardness-load dependency exhibited behavior of indentation size effect. True hardness value of BTO crystal was revealed as 4.4 GPa. Young's modulus decreased with increase of load and load-independent Young's modulus was found around 93 GPa at high loads. The load-dependent elastic and plastic deformation components were calculated and it was observed that the dominant component in BTO single crystal is plastic deformation at the applied loads. The present paper reports for the first time the mechanical characteristics of the BTO single crystal by carrying out nanoindentation experiments.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Determination of Optical Constants and Temperature Dependent Band Gap Energy of Gas0.25se0.75< Single Crystals
    (Natl inst Optoelectronics, 2017) Isik, M.; Gasanly, N.
    Optical properties of GaS0.25Se0.75 single crystals were investigated by means of temperature -dependent transmission and room temperature reflection experiments. Derivative spectrophotometry analysis showed that indirect band gap energies of the crystal increase from 2.13 to 2.26 eV as temperature is decreased from 300 to 10 K. Temperature dependence of band gap energy was fitted under the light of theoretical expression. The band gap energy change with temperature and absolute zero value of the band gap energy were found from the analyses. The Wemple-DiDomenico single effective oscillator model and Sellmeier oscillator model were applied to the spectral dependence of room temperature refractive index to find optical parameters of the GaS0.25Se0.75 crystal. Chemical composition of the crystal was determined using the energy dispersive spectral measurements.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Determination of optical parameters of Ga0.75In0.25Se layered crystals
    (Wiley-v C H verlag Gmbh, 2012) Isik, M.; Gasanly, N. M.
    The optical properties of the Ga0.75In0.25Se crystals have been investigated by means of transmission and reflection measurements in the wavelength range of 380-1100 nm. The analysis of the results performed at room temperature revealed the presence of optical indirect transtions with band gap energy of 1.89 eV. The variation of the band gap energy as a function of temperature was also studied in the temperature range of 10-300 K. The rate of change of band gap energy (? = 6.2 x 10(4) eV/K) and absolute zero value of the band gap (Egi(0) = 2.01 eV) were reported. The wavelength dependence of the refractive index was analyzed using Wemple and DiDomenico, Sellmeier and Cauchy models to find the oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index values. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Determination of Trapping Parameters of Thermoluminescent Glow Peaks of Semiconducting Tl2ga2< Crystals
    (Pergamon-elsevier Science Ltd, 2015) Isik, M.; Yildirim, T.; Gasanly, N. M.
    Thermoluminescence (TL) properties of Tl2Ga2S3Se layered single crystals were researched in the temperature range of 290-770 K. U glow curve exhibited two peaks with maximum temperatures of similar to 373 and 478 K. Curve fitting, initial rise and peak shape methods were used to determine the activation energies of the trapping centers associated with these peaks. Applied methods were in good agreement with the energies of 780 and 950 meV. Capture cross sections and attempt-to-escape frequencies of the trapping centers were reported. An energy level diagram showing transitions in the band gap of the crystal was plotted under the light of the results of the present work and previously reported papers on photoluminescence, thermoluminescence and thermally stimulated current measurements carried out below room temperature. (C) 2015 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 4
    Dielectric Functions and Interband Critical Points of Anisotropic Chain Structured Tlse Single Crystals
    (Amer inst Physics, 2012) Isik, M.; Gasanly, N. M.
    Spectroscopic ellipsometry measurements were carried out on TlSe single crystals for orientations of electric field, parallel (E parallel to c), and perpendicular (E perpendicular to c) to optic axis c. The experiments were performed in the 1.2-6.2 eV spectral range at room temperature. The real and imaginary parts of the pseudodielectric function as well as pseudorefractive index and pseudoextinction coefficient were calculated from the analysis of ellipsometric data under the light of ambient-substrate optical model. The energies of interband transitions (critical points) have been found from the analysis on second derivative spectra of the pseudodielectric function. The analysis revealed four and five interband transition structures for E parallel to c and E perpendicular to c configurations, respectively. The obtained critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure given in literature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761963]
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • »