The defect state of Yb-doped ZnO nanoparticles using thermoluminescence study

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Shallow trapping centers in Yb-doped ZnO nanoparticles were determined using thermoluminescence (TL) measurements applied in the 10-300 K temperature region. Undoped and Yb-doped ZnO nanoparticles were synthesized by sol-gel method. TL glow curve of undoped nano-particles presented three peaks around 56, 108 and 150 K whereas one additional peak around 83 K was observed in the TL curve of Yb-doped ZnO nano-particles. The increase of Yb concentration in the nanoparticles increased the TL intensity of this additional peak. Activation energies of interstitial defect centers were found as 20, 82 and 105 meV while energy of trapping center existing due to Yb-doping was obtained as 72 meV using curve fitting and initial rise methods.

Description

Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686;

Keywords

ZnO nanoparticles, Thermoluminescence, Defects

Turkish CoHE Thesis Center URL

Citation

7

WoS Q

Q2

Scopus Q

Q1

Source

Volume

100

Issue

Start Page

29

End Page

34

Collections