Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 19
    Citation - Scopus: 25
    Prediction of Composite Mechanical Properties: Integration of Deep Neural Network Methods and Finite Element Analysis
    (Mdpi, 2023) Gholami, Kimia; Ege, Faraz; Barzegar, Ramin
    Extracting the mechanical properties of a composite hydrogel; e.g., bioglass (BG)-collagen (COL), is often difficult due to the complexity of the experimental procedure. BGs could be embedded in the COL and thereby improve the mechanical properties of COL for bone tissue engineering applications. This paper proposed a deep-learning-based approach to extract the mechanical properties of a composite hydrogel directly from the microstructural images. Four datasets of various shapes of BGs (9000 2D images) generated by a finite element analysis showed that the deep neural network (DNN) model could efficiently predict the mechanical properties of the composite hydrogel, including the Young's modulus and Poisson's ratio. ResNet and AlexNet architecture were tuned to ensure the excellent performance and high accuracy of the proposed methods with R-values greater than 0.99 and a mean absolute error of the prediction of less than 7%. The results for the full dataset revealed that AlexNet had a better performance than ResNet in predicting the elastic material properties of BGs-COL with R-values of 0.99 and 0.97 compared to 0.97 and 0.96 for the Young's modulus and Poisson's ratio, respectively. This work provided bridging methods to combine a finite element analysis and a DNN for applications in diverse fields such as tissue engineering, materials science, and medical engineering.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 15
    Biomaterials and Tissue Engineering for Regenerative Repair of Articular Cartilage Defects
    (Turkish League Against Rheumatism, 2009) Tur, Kazim; Department of Metallurgical and Materials Engineering
    Articular cartilage defects heal very poorly and lead to degenerative arthritis. Existing medications cannot promote healing process; cartilage defects eventually require surgical replacements with autografts. As there is not enough source of articular cartilage that can be donated for autografting, materials that promote cartilage regeneration are important in both research and clinical applications. Tissue engineering involves cell growth on biomaterial scaffolds in vitro. These cells are then injected into cartilage defects for biological in vivo regeneration of the cartilage tissue. This review aims first to provide a brief introduction to the types of materials in medicine (biomaterials), to their roles in treatment of diseases, and to design factors and general requirements of biomaterials. Then, it attempts to sum up the recent advances in engineering articular cartilage; one of the most challenging area of study in biomaterials based tissue engineering, as an example to the research on regenerative solutions to musculoskeletal problems with an emphasis on the biomaterials that have been developed as scaffolds for cartilage tissue engineering. The definitive goal on cartilage regeneration is to develop a system using biomimetic approach to produce cartilage tissue that mimics native tissue properties, provides rapid restoration of tissue function, and is clinically translatable. This is obviously an ambitious goal; however, significant progress have been made in recent years; and further advances in materials design and technology will pave the way for creating significantly custom-made cellular environment for cartilage regeneration. (Turk J Rheumatol 2009; 24: 206-17)
  • Editorial
    Editorial: Cells, Biomaterials, and Biophysical Stimuli for Bone, Cartilage, and Muscle Regeneration
    (Frontiers Media Sa, 2023) Fassina, Lorenzo; Bloise, Nora; Ramalingam, Murugan; Cusella De Angelis, Maria Gabriella; Visai, Livia
    [No Abstract Available]
  • Article
    Citation - WoS: 23
    Citation - Scopus: 25
    Comparison of Cellular Proliferation on Dense and Porous Pcl Scaffolds
    (Ios Press, 2008) Sasmazel, Hilal Tuerkoglu; Gumusderelioglu, Menemse; Gurpinar, Aylin; Onur, Mehmet Ali
    In this contribution, PCL (poly-e caprolactone) scaffolds were prepared by solvent-casting/particle-leaching technique in the presence of two pore formers, PEG(4000) or sucrose molecules in different quantities (0, 10, 20, 30, 40, 50, 55 w/w% PEG(4000)/PCL; 10, 20 w/w% Sucrose/ PCL). The surface and bulk properties of the resulting scaffolds were studied by SEM, DSC and FTIR. SEM photographs showed that, macroporosity was obtained in the PCL structures prepared with sucrose crystals while microporous structure was obtained in the presence of PEG(4000) molecules. Average pore diameters calculated from SEM photographs were 40.1 and 191.2 mu m for 40% PEG(4000)/PCL and 10% Sucrose/PCL scaffolds, respectively. The DSC and FTIR results confirmed that there is no any interaction between pore formers and PCL during structural formation, and both pore formers, PEG(4000) and sucrose, remained independently in the scaffolds. L929 mouse fibroblast cells were seeded onto PCL structures and maintained during 7 days to evaluate cell proliferation. Cell culture results showed that, 10% Sucrose/ PCL scaffold was the most promising substrate for L929 cell growth due to 3-D architecture and macroporous structure of the scaffold.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 33
    Manufacturing of Zinc Oxide Nanoparticle (zno Np)-Loaded Polyvinyl Alcohol (pva) Nanostructured Mats Using ginger Extract for Tissue Engineering Applications
    (Mdpi, 2022) Izgis, Hursima; Ilhan, Elif; Kalkandelen, Cevriye; Celen, Emrah; Guncu, Mehmet Mucahit; Sasmazel, Hilal Turkoglu; Constantinescu, Gabriel
    In this research, as an alternative to chemical and physical methods, environmentally and cost-effective antimicrobial zinc oxide nanoparticles (ZnO NP) were produced by the green synthesis method. The current study focuses on the production of ZnO NP starting from adequate precursor and Zingiber officinale aqueous root extracts (ginger). The produced ZnO NP was loaded into electrospun nanofibers at different concentrations for various tissue engineering applications such as wound dressings. The produced ZnO NPs and ZnO NP-loaded nanofibers were examined by Scanning Electron Microscopy (SEM) for morphological assessments and Fourier-transform infrared spectrum (FT-IR) for chemical assessments. The disc diffusion method was used to test the antimicrobial activity of ZnO NP and ZnO NP-loaded nanofibers against three representatives strains, Escherichia coli (Gram-negative bacteria), Staphylococcus aureus (Gram-positive bacteria), and Candida albicans (fungi) microorganisms. The strength and stretching of the produced fibers were assessed using tensile tests. Since water absorption and weight loss behaviors are very important in tissue engineering applications, swelling and degradation analyses were applied to the produced nanofibers. Finally, the MTT test was applied to analyze biocompatibility. According to the findings, ZnO NP-loaded nanofibers were successfully synthesized using a green precipitation approach and can be employed in tissue engineering applications such as wound dressing.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 6
    Enhancement of Scaffolding Properties for Poly(3-Hydroxybutyrate): Blending With Poly-Β and Wet Electrospinning
    (Taylor & Francis As, 2019) Catiker, E.; Konuk, E.; Gultan, T.; Gumusderelioglu, M.
    Poly-beta-alanine (PBA), and its derivatives poly(alpha-methyl-beta-alanine) and poly[N-(3-methoxypropyl-beta-alanine) were synthesized by hydrogen transfer polymerization (HTP). Porous 3 D matrices of poly(3-hydroxybutyrate) (P3HB) reinforced with PBA/its derivatives were obtained via lyophilization and wet electrospinning. However, mechanical properties of the porous matrices prepared by wet electrospinning were found to present superior performance for tissue engineering applications. Cell culture study was performed by using wet electrospun P3HB matrices doped with 10% (w/w) PBA which show better manipulation ability, chemical and mechanical properties. Scaffolds of P3HB-PBA (10% w/w) blend was determined to demonstrate better cell attachment and proliferation compared to the scaffolds of pure P3HB.
  • Editorial
    Editorial: Biofabricated Materials for Tissue Engineering
    (Frontiers Media Sa, 2024) Sasmazel, Hilal Turkoglu; Gunduz, Oguzhan; Ramalingam, Murugan; Ulag, Songul
    [No Abstract Available]