Comparison of cellular proliferation on dense and porous PCL scaffolds

No Thumbnail Available

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Ios Press

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

In this contribution, PCL (poly-e caprolactone) scaffolds were prepared by solvent-casting/particle-leaching technique in the presence of two pore formers, PEG(4000) or sucrose molecules in different quantities (0, 10, 20, 30, 40, 50, 55 w/w% PEG(4000)/PCL; 10, 20 w/w% Sucrose/ PCL). The surface and bulk properties of the resulting scaffolds were studied by SEM, DSC and FTIR. SEM photographs showed that, macroporosity was obtained in the PCL structures prepared with sucrose crystals while microporous structure was obtained in the presence of PEG(4000) molecules. Average pore diameters calculated from SEM photographs were 40.1 and 191.2 mu m for 40% PEG(4000)/PCL and 10% Sucrose/PCL scaffolds, respectively. The DSC and FTIR results confirmed that there is no any interaction between pore formers and PCL during structural formation, and both pore formers, PEG(4000) and sucrose, remained independently in the scaffolds. L929 mouse fibroblast cells were seeded onto PCL structures and maintained during 7 days to evaluate cell proliferation. Cell culture results showed that, 10% Sucrose/ PCL scaffold was the most promising substrate for L929 cell growth due to 3-D architecture and macroporous structure of the scaffold.

Description

Turkoglu Sasmazel, Hilal/0000-0002-0254-4541

Keywords

poly(epsilon-caprolactone), poly(ethylene glycol), sucrose porous structures, L929 mouse fibroblasts, tissue engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

27

WoS Q

Q4

Scopus Q

Source

Volume

18

Issue

3

Start Page

119

End Page

128

Collections