Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Structural, Optical, Dielectric and Electrical Properties of Al-Doped Znse Thin Films
    (Springer, 2019) Kayed, T. S.; Qasrawi, A. F.; Elsayed, Khaled A.
    In this work, the heavy aluminum doping effects on the compositional, structural, optical, dielectric and electrical properties of ZnSe thin films are investigated. It is observed that the Zn/Se compositional ratio increases with increasing Al content. The major cubic phase of ZnSe becomes more pronounced compared to the hexagonal phase. In addition, the presence of Al in the structure of ZnSe causes lattice constant contraction, decreased the grain size and increased both of the strain and defect density. Optically, the Al doping increased the light absorbability and widens both of the energy band gap and energy interbands which are present in the band gap of ZnSe films. Moreover, the Al doping into ZnSe lowers the high frequency dielectric constant and enhances the optical conductivity. On the other hand, the capacitance spectra which are studied in the frequency domain of 0.01-1.80GHz displayed negative capacitance effect associated with resonance-antiresonance phenomena upon doping of ZnSe with Al. Such enhancements in the physical properties of ZnSe that are achieved via Al doping make the zinc selenide thin films more appropriate for electronic and optoelectronic technological applications.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Illumination Effects on the Capacitance Spectra and Signal Quality Factor of Al/Inse Microwave Sensors
    (Springer, 2013) Qasrawi, A. F.
    Amorphous indium selenide thin films have been used in the design of a microwave-sensitive Schottky barrier. The illumination effects on the capacitance spectra, on the signal quality factor, and on the capacitance (C)-voltage (V) characteristics of the Al/InSe/C device are investigated. Particular shifts in the amplitude and in the resonance peaks of the capacitance spectra which were studied in the frequency range of 10.0 kHz to 3.0 GHz are observed. While the photoexcitation of these devices increased the capacity level by similar to 1.6 times the original magnitude, the dark quality factor, which was 2.2 x 10(6) at 3.0 GHz, fell to 1.2 x 10(6) when subjected to luminance of 14.7 klux. Analysis of the C-V curves recorded at signal power ranging from wireless local area network (LAN) levels to the maximum output power of third generation (3G) mobiles reflected high tunability of capacitance upon increasing the voltage or power. The tunability of the biased capacitance was much more pronounced in the light than in the dark. The obtained characteristics of the Al/InSe/C sensors indicate their usability in radio and microwave technology.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    Formation and Characterization of Cd2s3< Polycrystalline Films Onto Glass and Lanthanum Substrates
    (Springer, 2019) Qasrawi, A. F.; Omareya, Olfat A.
    In this article, the structural, optical and dielectric properties of the rarely investigated Cd2S3 thin films are reported. Particularly, Cd2S3 thin films prepared by the thermal evaporation technique onto glass, and 150-nm-thick lanthanum transparent substrate studied by means of energy-dispersive structural analysis have shown that the Cd2S3 thin films are of polycrystalline nature. The hexagonal unit cell parameters, which slightly differ from that of CdS, increased upon replacement of glass with lanthanum. All the other structural parameters including the grain size, strain and defect density are accordingly affected. While the optical band gap increased when La replaces glass, the high-frequency dielectric constant decreased. On the other hand, the Drude-Lorentz modeling of the dielectric spectra has shown that the La/Cd2S3 thin films are promising materials for production of thin film transistors as they exhibit drift mobility values of approximate to 13.3cm(2)/Vs. The response of the glass/Cd2S3 and La/Cd2S3 interfaces to the incident electromagnetic light is associated with hole-plasmon interactions that are limited by plasmon frequency values in the range of 0.4-8.1GHz. Such property makes this material attractive as microwave band pass/reject filters.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Spectral Dynamics of the n-inse Heterojunction
    (Springer, 2015) Alharbi, S. R.; Qasrawi, A. F.
    The design and characterization of the InSe/BN heterojunction were investigated by study of optical reflectance, transmittance, and absorbance spectra in the incident wavelength range 300-1100 nm. Three absorption band edges related to conduction-valence band splitting of 2.75, 1.49, and 3.90 eV were observed. These bands shifted to 1.06 eV, 2.25 eV, and 3.85 eV on preparation of the InSe/BN interface. Analysis of dielectric spectra in the frequency range 275-1000 THz revealed the presence of three main resonance peaks at 333, 308, and 280 THz for the InSe substrate and at 341, 316, and 286 THz for the InSe/BN interface. The dispersion energy of the substrate increased from 27.43 eV to 33.77 eV on preparation of the InSe/BN interface. The quality factor of the heterojunction was found to be three times greater than that of InSe. The device seems to have potential, because the results suggest use of the heterojunction in thin-film transistor and optical communication technology.