Formation and Characterization of Cd<sub>2</Sub>s<sub>3< Polycrystalline Films Onto Glass and Lanthanum Substrates

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

In this article, the structural, optical and dielectric properties of the rarely investigated Cd2S3 thin films are reported. Particularly, Cd2S3 thin films prepared by the thermal evaporation technique onto glass, and 150-nm-thick lanthanum transparent substrate studied by means of energy-dispersive structural analysis have shown that the Cd2S3 thin films are of polycrystalline nature. The hexagonal unit cell parameters, which slightly differ from that of CdS, increased upon replacement of glass with lanthanum. All the other structural parameters including the grain size, strain and defect density are accordingly affected. While the optical band gap increased when La replaces glass, the high-frequency dielectric constant decreased. On the other hand, the Drude-Lorentz modeling of the dielectric spectra has shown that the La/Cd2S3 thin films are promising materials for production of thin film transistors as they exhibit drift mobility values of approximate to 13.3cm(2)/Vs. The response of the glass/Cd2S3 and La/Cd2S3 interfaces to the incident electromagnetic light is associated with hole-plasmon interactions that are limited by plasmon frequency values in the range of 0.4-8.1GHz. Such property makes this material attractive as microwave band pass/reject filters.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Cd2S3, formation, optical, plasmon, dielectric

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Source

Volume

48

Issue

4

Start Page

2350

End Page

2355

Collections