4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 2Citation - Scopus: 2Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms(Mdpi, 2023) Yilmaz, Vadi Su; Yılmaz, Vadi Su; Eseller, Kemal Efe; Aslan, Ozgur; Aslan, Özgür; Bayraktar, Emin; Eseller, Kemal Efe; Yılmaz, Vadi Su; Aslan, Özgür; Eseller, Kemal Efe; Electrical-Electronics Engineering; Department of Electrical & Electronics Engineering; Mechanical Engineering; Electrical-Electronics Engineering; Mechanical Engineering; Department of Electrical & Electronics EngineeringThis paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined.Data Paper Citation - WoS: 42Citation - Scopus: 62A Database for the Radio Frequency Fingerprinting of Bluetooth Devices(Mdpi, 2020) Uzundurukan, Emre; Dalveren, Yaser; Kara, AliRadio frequency fingerprinting (RFF) is a promising physical layer protection technique which can be used to defend wireless networks from malicious attacks. It is based on the use of the distinctive features of the physical waveforms (signals) transmitted from wireless devices in order to classify authorized users. The most important requirement to develop an RFF method is the existence of a precise, robust, and extensive database of the emitted signals. In this context, this paper introduces a database consisting of Bluetooth (BT) signals collected at different sampling rates from 27 different smartphones (six manufacturers with several models for each). Firstly, the data acquisition system to create the database is described in detail. Then, the two well-known methods based on transient BT signals are experimentally tested by using the provided data to check their solidity. The results show that the created database may be useful for many researchers working on the development of the RFF of BT devices.Article Citation - WoS: 55Citation - Scopus: 70Assessment of Features and Classifiers for Bluetooth Rf Fingerprinting(Ieee-inst Electrical Electronics Engineers inc, 2019) Ali, Aysha M.; Uzundurukan, Emre; Kara, AliRecently, network security has become a major challenge in communication networks. Most wireless networks are exposed to some penetrative attacks such as signal interception, spoofing, and stray. Radio frequency (RF) fingerprinting is considered to be a promising solution for network security problems and has been applied with various improvements. In this paper, extensive data from Bluetooth (BT) devices are utilized in RF fingerprinting implementation. Hilbert-Huang transform (HHT) has been used, for the first time, for RF fingerprinting of Bluetooth (BT) device identification. In this way, time-frequency-energy distributions (TFED) are utilized. By means of the signals' energy envelopes, the transient signals are detected with some improvements. Thirteen features are extracted from the signals' transients along with their TFEDs. The extracted features are pre-processed to evaluate their usability. The implementation of three different classifiers to the extracted features is provided for the first time in this paper. A comparative analysis based on the receiver operating characteristics (ROC) curves, the associated areas under curves (AUC), and confusion matrix are obtained to visualize the performance of the applied classifiers. In doing this, different levels of signal to noise ratio (SNR) levels are used to evaluate the robustness of the extracted features and the classifier performances. The classification performance demonstrates the feasibility of the method. The results of this paper may help readers assess the usability of RF fingerprinting for BT signals at the physical layer security of wireless networks.Article Citation - WoS: 25Citation - Scopus: 33Hybrid Eeg-Fnirs Bci Fusion Using Multi-Resolution Singular Value Decomposition (msvd)(Frontiers Media Sa, 2020) Khan, Muhammad Umer; Hasan, Mustafa A. H.Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.

