Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mechatronics Engineering
(2002)
The Atılım University Department of Mechatronics Engineering started its operation in 2002 as the Education Program in Mechatronics Engineering holding a “department” status in Turkey. In addition, it is the first and the only institution for mechatronic engineering education to obtain a MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) accreditation for a duration of 5 years. Mechatronics engineering is a discipline of engineering that combines mechanical, electrical and electronic engineering and software technologies on a machine or a product. These features place the field on a pedestal in today’s industry. The education at our department is also backed by substantial laboratory opportunities. Our students create interesting products of their skills and creativity for their dissertation projects. Should they wish to do so, our students may also proceed with a double-major program in the fields of Computer Engineering, Electrical - Electronics Engineering, Industrial Engineering, or Mechanical, Automotive or Software Engineering. Upon their demands, the Department of Mechatronic Engineering also offers a “Cooperative Education” program implemented in coordination with industrial institutions. Students receiving a portion of their training at industrial institutions and prepare for professional life under this program

Journal Issue

Abstract

Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.

Description

Khan, Muhammad/0000-0002-9195-3477

Keywords

hybrid BCI, fNIRS, EEG, multi-resolution singular value decomposition, multi-modal fusion, channel selection, classification

Turkish CoHE Thesis Center URL

Fields of Science

Citation

12

WoS Q

Q2

Scopus Q

Q3

Source

Volume

14

Issue

Start Page

End Page

Collections