Hybrid Eeg-Fnirs Bci Fusion Using Multi-Resolution Singular Value Decomposition (msvd)

dc.authorid Khan, Muhammad/0000-0002-9195-3477
dc.authorscopusid 57209876827
dc.authorscopusid 57218948439
dc.authorwosid Khan, Muhammad/N-5478-2016
dc.contributor.author Khan, Muhammad Umer
dc.contributor.author Hasan, Mustafa A. H.
dc.contributor.other Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:39:08Z
dc.date.available 2024-07-05T15:39:08Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Khan, Muhammad Umer; Hasan, Mustafa A. H.] Atilim Univ, Dept Mechatron Engn, Ankara, Turkey en_US
dc.description Khan, Muhammad/0000-0002-9195-3477 en_US
dc.description.abstract Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy. en_US
dc.identifier.citationcount 12
dc.identifier.doi 10.3389/fnhum.2020.599802
dc.identifier.issn 1662-5161
dc.identifier.pmid 33363459
dc.identifier.scopus 2-s2.0-85098056377
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.3389/fnhum.2020.599802
dc.identifier.uri https://hdl.handle.net/20.500.14411/3184
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:000600754900001
dc.identifier.wosquality Q2
dc.institutionauthor Khan, Muhammad Umer
dc.language.iso en en_US
dc.publisher Frontiers Media Sa en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 27
dc.subject hybrid BCI en_US
dc.subject fNIRS en_US
dc.subject EEG en_US
dc.subject multi-resolution singular value decomposition en_US
dc.subject multi-modal fusion en_US
dc.subject channel selection en_US
dc.subject classification en_US
dc.title Hybrid Eeg-Fnirs Bci Fusion Using Multi-Resolution Singular Value Decomposition (msvd) en_US
dc.type Article en_US
dc.wos.citedbyCount 18
dspace.entity.type Publication
relation.isAuthorOfPublication e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication.latestForDiscovery e2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublication cfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication.latestForDiscovery cfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections