Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)

dc.authoridKhan, Muhammad/0000-0002-9195-3477
dc.authorscopusid57209876827
dc.authorscopusid57218948439
dc.authorwosidKhan, Muhammad/N-5478-2016
dc.contributor.authorKhan, Muhammad Umer
dc.contributor.authorHasan, Mustafa A. H.
dc.contributor.otherMechatronics Engineering
dc.date.accessioned2024-07-05T15:39:08Z
dc.date.available2024-07-05T15:39:08Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Khan, Muhammad Umer; Hasan, Mustafa A. H.] Atilim Univ, Dept Mechatron Engn, Ankara, Turkeyen_US
dc.descriptionKhan, Muhammad/0000-0002-9195-3477en_US
dc.description.abstractBrain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system-achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals-is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.en_US
dc.identifier.citation12
dc.identifier.doi10.3389/fnhum.2020.599802
dc.identifier.issn1662-5161
dc.identifier.pmid33363459
dc.identifier.scopus2-s2.0-85098056377
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3389/fnhum.2020.599802
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3184
dc.identifier.volume14en_US
dc.identifier.wosWOS:000600754900001
dc.identifier.wosqualityQ2
dc.institutionauthorKhan, Muhammad Umer
dc.language.isoenen_US
dc.publisherFrontiers Media Saen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjecthybrid BCIen_US
dc.subjectfNIRSen_US
dc.subjectEEGen_US
dc.subjectmulti-resolution singular value decompositionen_US
dc.subjectmulti-modal fusionen_US
dc.subjectchannel selectionen_US
dc.subjectclassificationen_US
dc.titleHybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD)en_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione2e22115-4c8f-46cc-bce9-27539d99955e
relation.isAuthorOfPublication.latestForDiscoverye2e22115-4c8f-46cc-bce9-27539d99955e
relation.isOrgUnitOfPublicationcfebf934-de19-4347-b1c4-16bed15637f7
relation.isOrgUnitOfPublication.latestForDiscoverycfebf934-de19-4347-b1c4-16bed15637f7

Files

Collections