15 results
Search Results
Now showing 1 - 10 of 15
Article Citation - WoS: 11Citation - Scopus: 20The Taylor Series Method and Trapezoidal Rule on Time Scales(Elsevier Science inc, 2020) Georgiev, Svetlin G.; Erhan, Inci M.The Taylor series method for initial value problems associated with dynamic equations of first order on time scales with delta differentiable graininess function is introduced. The trapezoidal rule for the same types of problems is derived and applied to specific examples. Numerical results are presented and discussed. (c) 2020 Elsevier Inc. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 3Lyapunov-Type Inequalities for Lidstone Boundary Value Problems on Time Scales(Springer-verlag Italia Srl, 2020) Agarwal, Ravi P.; Oguz, Arzu Denk; Ozbekler, AbdullahIn this paper, we establish new Hartman and Lyapunov-type inequalities for even-order dynamic equations x.2n (t) + (-1)n-1q(t) xs (t) = 0 on time scales T satisfying the Lidstone boundary conditions x.2i (t1) = x.2i (t2) = 0; t1, t2. [t0,8) T for i = 0, 1,..., n - 1. The inequalities obtained generalize and complement the existing results in the literature.Book Citation - Scopus: 27Lyapunov Inequalities and Applications(Springer International Publishing, 2021) Agarwal,R.P.; Bohner,M.; Özbekler,A.This book provides an extensive survey on Lyapunov-type inequalities. It summarizes and puts order into a vast literature available on the subject, and sketches recent developments in this topic. In an elegant and didactic way, this work presents the concepts underlying Lyapunov-type inequalities, covering how they developed and what kind of problems they address. This survey starts by introducing basic applications of Lyapunov's inequalities. It then advances towards even-order, odd-order, and higher-order boundary value problems; Lyapunov and Hartman-type inequalities; systems of linear, nonlinear, and quasi-linear differential equations; recent developments in Lyapunov-type inequalities; partial differential equations; linear difference equations; and Lyapunov-type inequalities for linear, half-linear, and nonlinear dynamic equations on time scales, as well as linear Hamiltonian dynamic systems. Senior undergraduate students and graduate students of mathematics, engineering, and science will benefit most from this book, as well as researchers in the areas of ordinary differential equations, partial differential equations, difference equations, and dynamic equations. Some background in calculus, ordinary and partial differential equations, and difference equations is recommended for full enjoyment of the content. © Springer Nature Switzerland AG 2021. All rights reserved.Article Citation - Scopus: 5Adomian Polynomials Method for Dynamic Equations on Time Scales(DergiPark, 2021) Georgiev,S.G.; Erhan,I.M.A recent study on solving nonlinear differential equations by a Laplace transform method combined with the Adomian polynomial representation, is extended to the more general class of dynamic equations on arbitrary time scales. The derivation of the method on time scales is presented and applied to particular examples of initial value problems associated with nonlinear dynamic equations of first order. © 2021, DergiPark. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Principal and Nonprincipal Solutions of Impulsive Dynamic Equations: Leighton and Wong Type Oscillation Theorems(Springer, 2023) Zafer, A.; Akgol, S. DogruPrincipal and nonprincipal solutions of differential equations play a critical role in studying the qualitative behavior of solutions in numerous related differential equations. The existence of such solutions and their applications are already documented in the literature for differential equations, difference equations, dynamic equations, and impulsive differential equations. In this paper, we make a contribution to this field by examining impulsive dynamic equations and proving the existence of such solutions for second-order impulsive dynamic equations. As an illustration, we prove the famous Leighton and Wong oscillation theorems for impulsive dynamic equations. Furthermore, we provide supporting examples to demonstrate the relevance and effectiveness of the results.Article Citation - WoS: 3Citation - Scopus: 3Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales(Springer-verlag Italia Srl, 2017) Agarwal, Ravi P.; Cetin, Erbil; Ozbekler, AbdullahIn this paper, we present some newHartman and Lyapunov inequalities for second-order forced dynamic equations on time scales T with mixed nonlinearities: x(Delta Delta)(t) + Sigma(n)(k=1) qk (t)vertical bar x(sigma) (t)vertical bar (alpha k-1) x(sigma) (t) = f (t); t is an element of [t(0), infinity)(T), where the nonlinearities satisfy 0 < alpha(1) < ... < alpha(m) < 1 < alpha(m+1) < ... < alpha(n) < 2. No sign restrictions are imposed on the potentials qk, k = 1, 2, ... , n, and the forcing term f. The inequalities obtained generalize and compliment the existing results for the special cases of this equation in the literature.Article Citation - WoS: 4Citation - Scopus: 6Lagrange Interpolation on Time Scales(Wilmington Scientific Publisher, Llc, 2022) Georgiev, Svetlin G.; Erhan, Inci M.In this paper, we introduce the Lagrange interpolation polynomials on time scales. We define an alternative type of interpolation functions called s-Lagrange interpolation polynomials. We discuss some properties of these polynomials and show that on some special time scales, including the set of real numbers, these two types of interpolation polynomials coincide. We apply our results on some particular examples.Master Thesis Zaman Skalalarında Yüksek Mertebeden Çok Noktalı İmpalsif Sınır Değer Problemlerinin Çözümlerinin Varlığı(2022) Kuş, Murat Eymen; Akgöl, Sibel Doğru; Georgıev, Svetlin G.Bu tezde, çok noktalı yüksek mertebeden impalsif sınır değer problemlerinin zaman skalalarında çözümlerinin bulunması için yeterli koşulları araştırdık. Özellikle, üçüncü mertebeden impalsif sınır değer problemlerinin bir sınıfı ve 2n + 1, n ≥ 1 mertebeden bir impalsif sınır değer problemi sınıfı incelenmiştir. Bölüm 1'de zaman skalası ve bazı ilgili kavramların tanımları ile birlikte örnekler verilmiştir. Sonrasında tezde kullanılan sabit nokta teoremleri verilmiştir. Bölüm 2, üçüncü mertebeden çok noktalı dinamik impalsif sınır değer problemlerinin çözümlerinin varlığına ayrılmıştır. Bölüm 3'de tek sayı mertebeli çok noktalı dinamik impalsif sınır değer problemlerinin çözümlerinin varlığına odaklanılmıştır. Son olarak, Bölüm 4'te kısa bir sonuc¸ verilmiştir. Bu tezdeki sonuçların bir kısmı Georgian Mathematical Journal dergisinde basılmış, bir kısmı da Miskolc Mathematical Notes dergisinde basılmak üzere kabul edilmiştir.Master Thesis Zaman skalasında interpolasyon(2022) Jaddoa, Najlaa Abd Zaıd Jaddoa; Adıgüzel, Rezan Sevinik; Erhan, İnciBu tezde, zaman skalasında interpolasyon konusunu inceledik. Keyfi bir zaman skalası üzerinde, Lagrange, sigma-Lagrange, Hermite, sigma-Hermite, Newton ve sigma-Newton polinomlarını tanımladık. Bölünen ve sigma-bölünen farkları tanımlayarak, verilen bir veri kümesi için, Hermite polinomunu kolay yoldan elde etmek amacıyla bölünen farklar tablosu oluşturduk. Verilen bir veri kümesini, zaman skalasının yapısına bağlı olarak polinom olmayabilen fonksiyonlar olan sigma-polinomları ile temsil etmek (interpole etmek) alışılmadık bir yöntemdir. Bu şekilde, zaman skalasında interpolasyon için farklı bir bakış açısı sunmaktayız. Çeşitli zaman skalalarında birçok örnek inceledik. Bu örnekler Matlab ile elde edilen sayısal hesaplamalar ve ilgili grafikler ile desteklenmiştir.Book Part Approximation of Discontinuous Functions by q-bernstein Polynomials(Springer international Publishing Ag, 2016) Ostrovska, Sofia; Ozban, Ahmet YasarThis chapter presents an overview of the results related to the q-Bernstein polynomials with q > 1 attached to discontinuous functions on [0, 1]. It is emphasized that the singularities of such functions located on the set Jq : = {0} boolean OR {q-l}(l=0, infinity), q > 1 are definitive for the investigation of the convergence properties of their q-Bernstein polynomials.

