Adomian polynomials method for dynamic equations on time scales

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

DergiPark

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

A recent study on solving nonlinear differential equations by a Laplace transform method combined with the Adomian polynomial representation, is extended to the more general class of dynamic equations on arbitrary time scales. The derivation of the method on time scales is presented and applied to particular examples of initial value problems associated with nonlinear dynamic equations of first order. © 2021, DergiPark. All rights reserved.

Description

Keywords

Adomian polynomials, Dynamic equation, Laplace transform, Time scale

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Scopus Q

Q2

Source

Advances in the Theory of Nonlinear Analysis and its Applications

Volume

5

Issue

3

Start Page

300

End Page

315

Collections