Zaman skalasında interpolasyon

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Bu tezde, zaman skalasında interpolasyon konusunu inceledik. Keyfi bir zaman skalası üzerinde, Lagrange, sigma-Lagrange, Hermite, sigma-Hermite, Newton ve sigma-Newton polinomlarını tanımladık. Bölünen ve sigma-bölünen farkları tanımlayarak, verilen bir veri kümesi için, Hermite polinomunu kolay yoldan elde etmek amacıyla bölünen farklar tablosu oluşturduk. Verilen bir veri kümesini, zaman skalasının yapısına bağlı olarak polinom olmayabilen fonksiyonlar olan sigma-polinomları ile temsil etmek (interpole etmek) alışılmadık bir yöntemdir. Bu şekilde, zaman skalasında interpolasyon için farklı bir bakış açısı sunmaktayız. Çeşitli zaman skalalarında birçok örnek inceledik. Bu örnekler Matlab ile elde edilen sayısal hesaplamalar ve ilgili grafikler ile desteklenmiştir.
In this thesis, we investigate the interpolation on time scales. We define the Lagrange, sigma-Lagrange, Hermite, sigma-Hermite, Newton and sigma-Newton interpolation polynomials on arbitrary time scales. We define the divived and sigma-divided differences and construct a divided difference table to be used to obtain the Hermite polynomial for a given data set in a very easy way. The interpolation of a data set by means of the so called sigma-polynomials is an unusual one where the interpolating functions may not be polynomials depending on the form of the time scales under consideration. In this way, we provide a different aspect to the interpolation on time scales. We consider numerous examples on various types of time scales. The examples are supported by numerical computation and relevant figures obtained with Matlab.

Description

Keywords

Matematik, Lagrange enterpolasyonu, Mathematics, Zaman skalası, Lagrange interpolation, Time scale, İnterpolasyon, Interpolation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

83