Search Results

Now showing 1 - 10 of 29
  • Article
    Citation - WoS: 60
    Citation - Scopus: 64
    Computing Optimal Replacement Time and Mean Residual Life in Reliability Shock Models
    (Pergamon-elsevier Science Ltd, 2017) Eryilmaz, Serkan
    In this paper, matrix-based methods are presented to compute the optimal replacement time and mean residual lifetime of a system under particular class of reliability shock models. The times between successive shocks are assumed to have a common continuous phase-type distribution. The system's lifetime is represented as a compound random variable and some properties of phase-type distributions are utilized. Extreme shock model, run shock model, and generalized extreme shock model are shown to be the members of this class. Graphical illustrations and numerical examples are presented for the run shock model when the interarrival times between shocks follow Erlang distribution. (C) 2016 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 15
    Dynamic Modeling of General Three-State k-out-of-n< Systems: Permanent-Based Computational Results
    (Elsevier Science Bv, 2014) Eryilmaz, Serkan; Xie, Min
    This paper is concerned with dynamic reliability analysis of three-state k-out-of-n:G systems. It is assumed that the components and the systems can be in three states: perfect functioning, partial performance and complete failure. Using the concept of permanent, we study marginal and joint survival functions for the lifetime of two different three-state k-out-of-n:G systems that consist of independent and nonidentical components. Illustrative examples are also provided for the components which follow the Markov degradation process. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 65
    Citation - Scopus: 75
    Multivariate Copula Based Dynamic Reliability Modeling With Application To Weighted-k-out-of-n< Systems of Dependent Components
    (Elsevier, 2014) Eryilmaz, Serkan
    In this paper, a multivariate copula based modeling methodology for dynamic reliability modeling of weighted-k-out-of-n systems is applied. The system under consideration is assumed to have n dependent components each having its own weight. It has a performance level of at least k when the total weight of operating components is k or above. Copula based expressions for the survival function and mean time to failure of such a system are obtained. Extensive numerical results are presented for Clayton and Gumbel type copulas. The behavior of survival function and mean time to failure are investigated with respect to the value of Kendall's correlation coefficient. (C) 2014 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    The Number of Failed Components in Series-Parallel System and Its Application To Optimal Design
    (Pergamon-elsevier Science Ltd, 2020) Eryilmaz, Serkan; Ozkurt, Fatma Yerlikaya; Erkan, T. Erman
    The number of components that are failed at the time of system failure is a useful quantity since it gives an idea of how many spares should be available to replace all failed components upon the system failure. In this paper, the number of failed components is considered at subsystem and system levels for the series-parallel system that consists of K subsystems. In particular, the joint behavior of the number of failed components in each subsystem is studied when each subsystem has identical components and different subsystems have different types of components. The results are then used to find the optimal number of components in each subsystem by minimizing an expected cost per unit of time upon the system failure.
  • Article
    Citation - WoS: 75
    Citation - Scopus: 77
    Reliability and Optimal Replacement Policy for an Extreme Shock Model With a Change Point
    (Elsevier Sci Ltd, 2019) Eryilmaz, Serkan; Kan, Cihangir
    An extreme shock model when there is a change in the distribution of the magnitudes of shocks is defined and studied. Such a model is useful in practice since a sudden change in environmental conditions may cause a larger shock. In particular, the reliability and mean time to failure of the system is obtained by assuming that the times between arrivals of shocks follow phase-type distribution. The optimal replacement policy that is based on a control limit is also proposed. The results are illustrated when the number of shocks until the change point follows geometric distribution.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Reliability and Performance Evaluation of Weighted K-out-of- N :g System Consisting of Components With Discrete Lifetimes
    (Elsevier Sci Ltd, 2024) Eryilmaz, Serkan
    For the k-out-of-n n system consisting of components that have different weights, the system is in a good state if the total weight of working components is at least k . Such a system is known to be weighted k-out-of- n :G system. Although the weighted k-out-of-n n system that has continuously distributed components' lifetimes has been extensively studied, the discrete weighted k-out-of- n :G system has not been considered yet. The present paper fills this gap by modeling and analyzing the weighted k-out-of-n:G n :G system that consists of discretely distributed components' lifetimes. In particular, the behavior of the total capacity/weight of the system with respect to the component failures is evaluated. An optimization problem that is concerned with the determination of optimal number of spare components is also formulated by utilizing the mean lost capacity of the system.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 24
    Computing reliability indices of repairable systems via signature
    (Elsevier Science Bv, 2014) Eryilmaz, Serkan
    The purpose of this paper is to show the usefulness of system signature for computing some important reliability indices of repairable systems. In particular, we obtain signature-based expressions for stationary availability, rate of occurrence of failure, and mean time to the first failure of repairable systems. Using these expressions we compute corresponding reliability indices of all systems with three and four components. Computational results are also presented for consecutive-k-within-m-out-of-n:F and m-consecutive-k-out-of-n:F systems. (C) 2013 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    Age replacement policies for discrete and continuous heterogeneous k-out-of-n systems
    (Springer, 2024) Eryilmaz, Serkan; Bulanik, Irem
    This paper studies age replacement policy for the k-out-of-n system that consists of independent but nonidentical components. Both continuously and discretely distributed components' lifetimes are considered. The failed components are replaced by new components and non-failed components are rejuvenated. Because the components are non-identical, the acquisition and rejuvenation costs of the components are chosen differently. The policy and the associated optimization problem are presented for general k and n, and 2-out-of-3 systems are studied in detail. The findings of the present paper extend the results in the literature from parallel systems to k-out-of-n systems.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 24
    Optimization Problems for a Parallel System With Multiple Types of Dependent Components
    (Elsevier Sci Ltd, 2020) Eryilmaz, Serkan; Ozkut, Murat
    This paper is concerned with two optimization problems for a parallel system that consists of dependent components. First, the problem of finding the number of elements in the system that minimizes the mean cost rate of the system is considered. The second problem is concerned with the optimal replacement time of the system. Previous work assumes that the components are independent. We discuss the impact of dropping this assumption. In particular, we numerically examine how the dependence between the components affects the optimal number of units and replacement time for the system which minimize mean cost rates. We first consider the case when the components are exchangeable and dependent, i.e. the system consists of single type of dependent components. Subsequently, we consider a system that consists of multiple types of dependent components. Comparative numerical results are presented for particularly chosen dependence models.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Parallel and Consecutive-k-out-of-n< Systems Under Stochastic Deterioration
    (Elsevier Science inc, 2014) Eryilmaz, Serkan
    In this paper, we study parallel and consecutive-k-out-of-n:F systems consisting of components which are subject to random deterioration with time. The random deterioration in resistance of a component is defined through a stochastic process. We obtain lifetime distribution of a parallel system via classical probabilistic techniques. The lifetime distribution of a consecutive-k-out-of-n:F system is derived using the lifetime distribution of parallel systems and the concept of maximal signature. We also study the optimal replacement time for a parallel system. We present illustrative computational results using MATHCAD. (C) 2013 Elsevier Inc. All rights reserved.