The Number of Failed Components in Series-Parallel System and Its Application To Optimal Design

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

The number of components that are failed at the time of system failure is a useful quantity since it gives an idea of how many spares should be available to replace all failed components upon the system failure. In this paper, the number of failed components is considered at subsystem and system levels for the series-parallel system that consists of K subsystems. In particular, the joint behavior of the number of failed components in each subsystem is studied when each subsystem has identical components and different subsystems have different types of components. The results are then used to find the optimal number of components in each subsystem by minimizing an expected cost per unit of time upon the system failure.

Description

Erkan, Turan Erman/0000-0002-0078-711X; Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Lifetime distribution, Optimal design, Reliability, Series-parallel system

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

150

Issue

Start Page

End Page

Collections