Search Results

Now showing 1 - 7 of 7
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Nonoscillation and Oscillation of Second-Order Impulsive Differential Equations With Periodic Coefficients
    (Pergamon-elsevier Science Ltd, 2012) Ozbekler, A.; Zafer, A.
    In this paper, we give a nonoscillation criterion for half-linear equations with periodic coefficients under fixed moments of impulse actions. The method is based on the existence of positive solutions of the related Riccati equation and a recently obtained comparison principle. In the special case when the equation becomes impulsive Hill equation new oscillation criteria are also obtained. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 4
    A Sturm Comparison Criterion for Impulsive Hyperbolic Equations
    (Springer-verlag Italia Srl, 2020) Ozbekler, Abdullah; Isler, Kubra Uslu
    In this paper, we investigate the Sturmian comparison theory for hyperbolic equations with fixed moments of effects. The results obtained extend the results of those existing in the literature for Sturmian comparison theory on ordinary and impulsive differential equations to impulsive hyperbolic equations.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 21
    Principal and Nonprincipal Solutions of Impulsive Differential Equations With Applications
    (Elsevier Science inc, 2010) Ozbekler, A.; Zafer, A.
    We introduce the concept of principal and nonprincipal solutions for second order differential equations having fixed moments of impulse actions is obtained. The arguments are based on Polya and Trench factorizations as in non-impulsive differential equations, so we first establish these factorizations. Making use of the existence of nonprincipal solutions we also establish new oscillation criteria for nonhomogeneous impulsive differential equations. Examples are provided with numerical simulations to illustrate the relevance of the results. (C) 2010 Elsevier Inc. All rights reserved.
  • Review
    Citation - WoS: 3
    Citation - Scopus: 3
    Lyapunov Type Inequalities for Second Order Forced Mixed Nonlinear Impulsive Differential Equations
    (Elsevier Science inc, 2016) Agarwal, Ravi P.; Ozbekler, Abdullah
    In this paper, we present some new Lyapunov and Hartman type inequalities for second order forced impulsive differential equations with mixed nonlinearities: x ''(t) + p(t)vertical bar x(t)vertical bar(beta-1)x(t) + q(t)vertical bar x(t)vertical bar(gamma-1)x(t) = f(t), t not equal theta(i); Delta x'(t) + p(i)vertical bar x(t)vertical bar(beta-1)x(t) + q(i)vertical bar x(t)vertical bar(gamma-1) x(t) = f(i), t = theta(i), where p, q, f are real-valued functions, {p(i)}, {q(i)}, {f(i)} are real sequences and 0 < gamma < 1 < beta < 2. No sign restrictions are imposed on the potential functions p, q and the forcing term f and the sequences {p(i)}, {q(i)}, {f(i)}. The inequalities obtained generalize and complement the existing results for the special cases of this equation in the literature. (C) 2016 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 27
    Citation - Scopus: 29
    Oscillation of Solutions of Second Order Mixed Nonlinear Differential Equations Under Impulsive Perturbations
    (Pergamon-elsevier Science Ltd, 2011) Ozbekler, A.; Zafer, A.
    New oscillation criteria are obtained for second order forced mixed nonlinear impulsive differential equations of the form (r(t)Phi(alpha)(x'))' + q(t)(Phi)(x) + Sigma(n)(k=1)q(k)(t)Phi beta(k)(x ) = e(t), t not equal theta(I) x(theta(+)(i)) = ajx(theta(+)(i)) = b(i)x'(theta(i)) where Phi(gamma):= ,s vertical bar(gamma-1)s and beta(1) > beta(2) > ... > beta(m) > alpha > beta(m+1)> ... > beta(n) > beta(n) > 0. If alpha = 1 and the impulses are dropped, then the results obtained by Sun and Wong [Y.G. Sun, J.S.W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007) 549-560] are recovered. Examples are given to illustrate the results. (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Asymptotic Representation of Solutions for Second-Order Impulsive Differential Equations
    (Elsevier Science inc, 2018) Akgol, S. Dogru; Zafer, A.
    We obtain sufficient conditions which guarantee the existence of a solution of a class of second order nonlinear impulsive differential equations with fixed moments of impulses possessing a prescribed asymptotic behavior at infinity in terms of principal and nonprincipal solutions. An example is given to illustrate the relevance of the results. (C) 2018 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Prescribed asymptotic behavior of second-order impulsive differential equations via principal and nonprincipal solutions
    (Academic Press inc Elsevier Science, 2021) Akgol, S. Dogru; Zafer, A.
    Finding solutions with prescribed asymptotic behavior is a classical problem for differential equations, which is also known as the asymptotic integration problem for differential equations. Very recent results have revealed that the problem is closely related to principal and nonprincipal solutions of a related homogeneous linear differential equation. Such solutions for second-order linear differential equations without impulse effects, first appeared in [W. Leighton, M. Morse, Trans. Amer. Math. Soc. 40 (1936), 252-286]. In the present work we first establish the concept of principal and nonprincipal solutions for second-order linear impulsive differential equations, and then use them to prove the existence of solutions for a class of second-order nonlinear impulsive differential equations, with prescribed asymptotic behavior at infinity in terms of a linear combination of these principal and nonprincipal solutions. Examples and numerical simulations are provided to illustrate the obtained results. (c) 2021 Elsevier Inc. All rights reserved.