Prescribed asymptotic behavior of second-order impulsive differential equations via principal and nonprincipal solutions

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press inc Elsevier Science

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Finding solutions with prescribed asymptotic behavior is a classical problem for differential equations, which is also known as the asymptotic integration problem for differential equations. Very recent results have revealed that the problem is closely related to principal and nonprincipal solutions of a related homogeneous linear differential equation. Such solutions for second-order linear differential equations without impulse effects, first appeared in [W. Leighton, M. Morse, Trans. Amer. Math. Soc. 40 (1936), 252-286]. In the present work we first establish the concept of principal and nonprincipal solutions for second-order linear impulsive differential equations, and then use them to prove the existence of solutions for a class of second-order nonlinear impulsive differential equations, with prescribed asymptotic behavior at infinity in terms of a linear combination of these principal and nonprincipal solutions. Examples and numerical simulations are provided to illustrate the obtained results. (c) 2021 Elsevier Inc. All rights reserved.

Description

Doğru Akgöl, Sibel/0000-0003-3513-1046

Keywords

Nonlinear, Impulse, Differential equation, Principal solution, Nonprincipal solution, Asymptotic integration

Turkish CoHE Thesis Center URL

Citation

6

WoS Q

Q2

Scopus Q

Q2

Source

Volume

503

Issue

2

Start Page

End Page

Collections