8 results
Search Results
Now showing 1 - 8 of 8
Article Citation - WoS: 3Citation - Scopus: 4Effects of Ge Substrate on the Structural and Optical Conductivity Parameters of Bi2o3< Thin Films(Elsevier Gmbh, 2019) Alharbi, S. R.; Qasrawi, A. F.In this article the structural, optical and dielectric properties of a 200 nm thick Bi2O3 thin films which are deposited onto amorphous germanium substrate are reported. Both of the Ge and Bi2O3 thin films are prepared by the thermal evaporation technique under vacuum pressure of 10 s mbar. Bi2O3 thin films are found to prefer the monoclinic nature of structure with larger values of microstrain, dislocation density, stacking faults and smaller grain sizes upon replacement of the glass substrate by germanium. Optically, significant redshift in the energy band gap is observed when the films are grown onto Ge. The Ge/Bi2O3 heterojunctions exhibit a conduction and valence band offsets of value of 0.81 and 1.38 eV, respectively. In addition to the enhancement in the dielectric constant near the IR region, the Drude-Lorentz modeling of the Ge/Bi2O3 heterojunctions has shown remarkable effect of the Ge substrate on the optical conductivity parameters of Bi2O3. Particularly, the drift mobility increased by about one order of magnitude, the free hole density decreased by (similar to)24 times and the plasmon frequency ranges extended from 5.21 to 11.0 GHz to 2.59-12.80 GHz when germanium substrate is used. The optical features of the heterojunction nominate it for visible light communication technology.Article Citation - WoS: 11Citation - Scopus: 12Effect of Au Nanosandwiching on the Structural, Optical and Dielectric Properties of the as Grown and Annealed Inse Thin Films(Elsevier Science Bv, 2017) Omareya, Olfat A.; Qasrawi, A. F.; Al Garni, S. E.In the current work, the structural, optical and dielectric properties of the InSe/Au/InSe nanosandwiched structures are investigated by means of X-ray diffraction and UV-visible light spectrophotometry techniques. The insertion of a 20 and 100 nm thick Au metal slabs between two InSe layers did not alter the amorphous nature of the as grown InSe films but decreased the energy band gap and the free carrier density. It also increased; the absorption ratio and the values of dielectric constant by similar to 3 times. The insertion of 100 nm Au layers as a nanosandwich enhanced the drift mobility (31.3 cm(2)/V s) and plasmon frequency (1.53 GHz) of the InSe films. On the other hand, upon annealing, a metal induced crystallization process is observed for the InSe/Au (100 nm)/InSe sandwiches. Particularly, while the samples sandwiched with a layer of 20 nm thickness hardly revealed hexagonal gamma -In2Se3 when annealed at 300 degrees C, those sandwiched with 100 nm Au slab, displayed well crystalline phase of hexagonal gamma -In2Se3 at annealing temperature of 200 degrees C. The further annealing at 300 degrees C, forced the appearing of the orthorhombic In4Se3 phase. Optically, the annealing of the InSe/Au(100 nm)/InSe at 200 degrees C improved the absorption ratio by similar to 9 times and decreased the energy band gap. The nanosandwiching technique of InSe seems to be promising for the engineering of the optical properties of the InSe photovoltaic material.Article Citation - WoS: 9Citation - Scopus: 9Optical Dynamics in the Ag/Α-ga2< Layer System(Elsevier Sci Ltd, 2018) Alharbi, S. R.; Qasrawi, A. F.In this work, thin films of Ga2S3 are deposited onto 150 nm thick transparent Ag substrate by the physical vapor deposition technique under vacuum pressure of 10(-5) mbar. The films are studied by the X-ray diffraction and optical spectrophotometry techniques. It is found that the Ag substrate induced the formation of the monoclinic alpha-Ga2S3 polycrystals. The transparent Ag substrate also changed the preferred optical transition in Ga2S3 from direct to indirect It also increased the light absorption by 79 and 23 times at incident light energies of 2.01 and 2.48 eV, respectively. In addition, a red shift in all types of optical transitions is observed. Some the extended energy band tails of Ag appears to form interbands in the band gap of Ga2S3. These interbands strongly attenuated the dielectric and optical conduction parameters. Particularly, an enhancement in the dielectric constant values and response to incident electromagnetic field is observed. The Drude-Lorentz modeling of this interface has shown that the free carrier density, drift mobility, plasmon frequency and reduced electron-plasmon frequency in Ga2S3 increases when the Ag substrate replaced the glass or other metals like Yb, Al and Au. The nonlinear optical dynamics of the Ag/Ga2S3 are promising as they indicate the applicability of this interface for optoelectronic applications.Article Citation - WoS: 8Citation - Scopus: 10Structural, Electrical and Dielectric Properties of Bi1.5zn0.92< Pyrochlore Ceramics(Elsevier Sci Ltd, 2012) Qasrawi, A. F.; Mergen, A.The micro-structural, compositional, temperature dependent dielectric and electrical properties of the Bi1.5Zn0.92Nb1.5-xTaxO6.92 solid solution has been investigated. The increasing Ta content from 0.2 to 1.5 caused; single phase formation, a pronounced grain size reduction from similar to 7.0 to 2.5 mu m, sharp decrease in the dielectric constant from 198 to 88 and an increase in the electrical conductivity from 3.16 x 10(-10) to 5.0 x 10(-9) (Omega cm)(-1), respectively. The temperature dependent dielectric constant which is found to be frequency invariant in the frequency range of (0.0-2.0 MHz) exhibited a sharp change in the temperature coefficient of dielectric constant at a (doping independent) critical temperature of 395 K. The analysis of the measured data reflects a promising future for this type of pyrochlore to be used in high voltage passive device applications. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 10Growth and Characterization of Inse/Ge Interfaces(Elsevier Gmbh, Urban & Fischer verlag, 2017) Al Garni, S. E.; Omareye, Olfat A.; Qasrawi, A. F.In the current study, we report the effect of insertion of a 200 nm thick Ge film between two layers of InSe. The Ge sandwiched InSe films are studied by means of X-ray diffraction technique, energy dispersion X-ray spectroscopy attached to a scanning electron microscope, optical spectrophotometry and light power dependent photoconductivity. It was observed that, The InSe prefers the growth of InSe monophase when deposited onto glass and the growth of gamma-In2Se3 when deposited onto InSe/Ge substrate. The three layers interface (InSe/Ge/gamma-In2Se3) exhibits a Ge induced crystallization process at annealing temperature of 200 degrees C. The optical analysis has shown that the InSe films exhibit a redshift upon Ge sandwiching. In addition, the conduction and valence bands offsets at the first interface (InSe/Ge) and at the second (Ge/gamma-In2Se3) interface are found to be 0.55 eV and 1.0 eV, and 0.40eVand 1.38 eV, respectively. Moreover, the photocurrent of the Ge sandwiched InSe exhibited higher photocurrent values as compared to those of InSe. On the other hand, the dielectric spectral analysis and modeling which lead to the identifying of the optical conduction parameters presented by the plasmon frequency, electron scattering time, free electron density and drift mobility have shown that the Ge sandwiching increased the drift mobility values from 10 cm(2)/Vs to 42 cm(2)/Vs. The main plasmon frequency also increased from 1.08 to 1.68 GHz. (C) 2017 Elsevier GmbH. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 8Effect of Lithium Nanosandwiching on the Structural, Optical and Dielectric Performance of Moo3(Elsevier, 2019) Al Garni, S. E.; Qasrawi, A. F.In this article, we discuss the effects of lithium nanosheets on the structural, optical, dielectric and optical conductivity parameters of the MoO3 films. The nanosandwiching of Li layers between two layers of MoO3 of thicknesses larger than 20 nm induced the crystallization process of the amorphous MoO3. Namely, MoO3 thin films that are nanosandwiched with Li sheets of thicknesses larger than 50 nm, exhibit structural phase transitions from hexagonal to monoclinic and reveals larger crystallite sizes. The possible formation of Li2O at the MoO3/Li/MoO3 interfaces is simulated and discussed. Optically, the Li nanosandwiching is observed to enhance the light absorbability by 11.0 times at 2.0 eV and successfully engineered the energy bands gap in the range of 3.05-0.45 eV. It also enhances the dielectric performance. In addition, relatively thick layers of lithium (200 nm) succeeds in converting the conductivity type from n-to p-type. The modeling of the dielectric spectra in accordance with the Drude- Lorentz approach have shown that the presence of Li in the structure of MoO(3 )significantly increases the drift mobility values of electrons from 5.86 to 11.40 cm(2)/V. The plasmon frequency range for this system varies in the frequency domain of 0.32-5.94 GHz. The features of MoO3/Li/MoO3 interfaces make them attractive for thin film transistor technology as optical receivers being promising for use in optical communications.Article Citation - WoS: 12Citation - Scopus: 14Engineering the Structural, Optical and Dielectric Properties of Znse Thin Films Via Aluminum Nanosandwiching(Elsevier Gmbh, 2019) Qasrawi, A. F.; Alsabe, Ansam M.In this work, two stacked layers of ZnSe thin films are nanosandwiched with aluminum slabs of variable thickness in the range of 10-100 nm. The films which are studied by the X-ray diffraction and ultra-violet visible light spectroscopy techniques exhibit interesting features presented by extension of the cubic lattice parameter, increase in the grain size and reduction in both of the microstrains and defect density. The Al nanosandwiching successfully engineered the energy band gap through narrowing it from 2.84 to 1.85 eV. In addition, the Al nanosandwiching is observed to form interbands that widens upon increasing the Al layer thickness. It also changed the electronic transition nature from direct allowed to direct forbidden type. Moreover, remarkable enhancement in the light absorbability by 796 times is observed near 1.72 eV for two stacked ZnSe layers nanosandwiched with Al slab of thickness of 100 nm. The dielectric constant is also increased three times and the dielectric tenability vary in the range of 3.0-1.2 eV. The nonlinearity in the dielectric spectra and the engineering of the band gap that become more pronounced in the presence of Al slabs make the ZnSe more attractive for nonlinear optical applications.Article Citation - WoS: 3Citation - Scopus: 3Investigation of the Physical Properties of Bi1.5-xcdx< Pyrochlore Ceramics(Springer, 2013) Qasrawi, A. F.; Kmail, Bayan H.; Nazzal, Eman M.; Mergen, A.For the purpose of dielectric parameters tuning Bi1.5Zn0.92Nb1.5O6.92 (BZN) pyrochlore ceramics were subject to cadmium doping in accordance to the chemical formula; Bi1.5-xCdxZn0.92Nb1.5O6.92-x/2 for 0.10 a parts per thousand currency sign x a parts per thousand currency sign 0.50. The main physical properties of the doped samples were investigated by means of X-ray diffraction, scanning electron microscopy associated with energy dispersion spectroscopy, temperature dependent dielectric constant and temperature dependent electrical resistivity to obtain the crystalline structure, the lattice parameter, the relative density, the surface morphology and chemical composition. Optimization of single phase Cd doped samples were possible for x a parts per thousand currency signaEuro parts per thousand 0.14, beyond this limit, ZnO and Zn3Nb2O8 minor phases grow through the structure of the BZN. For samples which exhibit single BZN phase, the dielectric constant, the electrical resistivity and the resistivity activation energy increased with increasing Cd content. The maximum obtainable dielectric constant as 259 and 224 with high signal quality factor of 690 and 1090 at 25 and 200 A degrees C, respectively, was for the sample doped with 0.14 Cd. These values are promising for implantation of BZN in RF and microwave technology as a resonator with high quality signal.

