3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - Scopus: 3Complete Characterization of a Class of Permutation Trinomials in Characteristic Five(Springer, 2024) Grassl,M.; Özbudak,F.; Özkaya,B.; Temür,B.G.In this paper, we address an open problem posed by Bai and Xia in [2]. We study polynomials of the form f(x)=x4q+1+λ1x5q+λ2xq+4 over the finite field F5k, which are not quasi-multiplicative equivalent to any of the known permutation polynomials in the literature. We find necessary and sufficient conditions on λ1,λ2∈F5k so that f(x) is a permutation monomial, binomial, or trinomial of F52k. © The Author(s) 2024.Article Citation - WoS: 12Citation - Scopus: 13Classification of Some Quadrinomials Over Finite Fields of Odd Characteristic(Academic Press inc Elsevier Science, 2023) Ozbudak, Ferruh; Temur, Burcu GulmezIn this paper, we completely determine all necessary and sufficient conditions such that the polynomial f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, is a permutation quadrinomial of Fq2 over any finite field of odd characteristic. This quadrinomial has been studied first in [25] by Tu, Zeng and Helleseth, later in [24] Tu, Liu and Zeng revisited these quadrinomials and they proposed a more comprehensive characterization of the coefficients that results with new permutation quadrinomials, where char(Fq) = 2 and finally, in [16], Li, Qu, Li and Chen proved that the sufficient condition given in [24] is also necessary and thus completed the solution in even characteristic case. In [6] Gupta studied the permutation properties of the polynomial x3 + axq +2 + bx2q +1 + cx3q, where char(Fq) = 3, 5 and a, b, c is an element of Fq* and proposed some new classes of permutation quadrinomials of Fq2 . In particular, in this paper we classify all permutation polynomials of Fq2 of the form f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, over all finite fields of odd characteristic and obtain several new classes of such permutation quadrinomials. (c) 2022 Elsevier Inc. All rights reserved.Article Citation - WoS: 13Citation - Scopus: 12Classification of Permutation Polynomials of the Form x3< of Fq2< Where g(x< = x3< + bx Plus c and b, c ∈ Fq<(Springer, 2022) Ozbudak, Ferruh; Temur, Burcu GulmezWe classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.

