Classification of permutation polynomials of the form <i>x</i><SUP>3</SUP><i>g</i>(<i>x</i><SUP><i>q</i>-1</SUP>) of F<sub><i>q</i>2</sub> where <i>g</i>(<i>x</i>) = <i>x</i><SUP>3</SUP> + <i>bx</i> plus <i>c</i> and <i>b</i>, <i>c</i> ∈ F<i><sub>q</sub></i>*
No Thumbnail Available
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.
Description
Ozbudak, Ferruh/0000-0002-1694-9283
ORCID
Keywords
Finite fields, Permutation polynomials, Absolutely irreducible
Turkish CoHE Thesis Center URL
Fields of Science
Citation
7
WoS Q
Q2
Scopus Q
Source
Volume
90
Issue
7
Start Page
1537
End Page
1556