Classification of Permutation Polynomials of the Form <i>x</I><sup>3< of F<sub><i>q</I>2< Where <i>g</I>(<i>x< = <i>x</I><sup>3< + <i>bx</I> Plus <i>c</I> and <i>b</I>, <i>c</I> ∈ F<i><sub>q</Sub><

dc.contributor.author Ozbudak, Ferruh
dc.contributor.author Temur, Burcu Gulmez
dc.date.accessioned 2024-07-05T15:17:39Z
dc.date.available 2024-07-05T15:17:39Z
dc.date.issued 2022
dc.description Ozbudak, Ferruh/0000-0002-1694-9283 en_US
dc.description.abstract We classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve. en_US
dc.description.sponsorship METU Coordinatorship of Scientific Research Projects [GAP-101-2021-10755] en_US
dc.description.sponsorship We would like to thank the anonymous referees for their valuable suggestions and comments. Ferruh ozbudak is supported partially by METU Coordinatorship of Scientific Research Projects via Grant GAP-101-2021-10755. en_US
dc.identifier.doi 10.1007/s10623-022-01052-0
dc.identifier.issn 0925-1022
dc.identifier.issn 1573-7586
dc.identifier.scopus 2-s2.0-85130380578
dc.identifier.uri https://doi.org/10.1007/s10623-022-01052-0
dc.identifier.uri https://hdl.handle.net/20.500.14411/1753
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Designs, Codes and Cryptography
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Finite fields en_US
dc.subject Permutation polynomials en_US
dc.subject Absolutely irreducible en_US
dc.title Classification of Permutation Polynomials of the Form <i>x</I><sup>3< of F<sub><i>q</I>2< Where <i>g</I>(<i>x< = <i>x</I><sup>3< + <i>bx</I> Plus <i>c</I> and <i>b</I>, <i>c</I> ∈ F<i><sub>q</Sub>< en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ozbudak, Ferruh/0000-0002-1694-9283
gdc.author.scopusid 6603589033
gdc.author.scopusid 22136765100
gdc.author.wosid Temür, Burcu Gülmez/ABF-4807-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ozbudak, Ferruh] Middle East Tech Univ, Dept Math, Ankara, Turkey; [Ozbudak, Ferruh] Middle East Tech Univ, Inst Appl Math, Ankara, Turkey; [Temur, Burcu Gulmez] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey en_US
gdc.description.endpage 1556 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1537 en_US
gdc.description.volume 90 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4281256415
gdc.identifier.wos WOS:000800829500001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 2.9747604E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Algebraic coding theory; cryptography (number-theoretic aspects)
gdc.oaire.keywords permutation polynomials
gdc.oaire.keywords Special polynomials in general fields
gdc.oaire.keywords finite fields
gdc.oaire.keywords Polynomials over finite fields
gdc.oaire.keywords absolutely irreducible
gdc.oaire.popularity 9.450437E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.15378702
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 9
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 12
gdc.virtual.author Gülmez Temür, Burcu
gdc.wos.citedcount 13
relation.isAuthorOfPublication f5db1fdd-5efd-4262-b210-1d7c6fd78ac7
relation.isAuthorOfPublication.latestForDiscovery f5db1fdd-5efd-4262-b210-1d7c6fd78ac7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections