Classification of Some Quadrinomials Over Finite Fields of Odd Characteristic
Loading...
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press inc Elsevier Science
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In this paper, we completely determine all necessary and sufficient conditions such that the polynomial f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, is a permutation quadrinomial of Fq2 over any finite field of odd characteristic. This quadrinomial has been studied first in [25] by Tu, Zeng and Helleseth, later in [24] Tu, Liu and Zeng revisited these quadrinomials and they proposed a more comprehensive characterization of the coefficients that results with new permutation quadrinomials, where char(Fq) = 2 and finally, in [16], Li, Qu, Li and Chen proved that the sufficient condition given in [24] is also necessary and thus completed the solution in even characteristic case. In [6] Gupta studied the permutation properties of the polynomial x3 + axq +2 + bx2q +1 + cx3q, where char(Fq) = 3, 5 and a, b, c is an element of Fq* and proposed some new classes of permutation quadrinomials of Fq2 . In particular, in this paper we classify all permutation polynomials of Fq2 of the form f(x) = x3 + axq +2 + bx2q +1 + cx3q, where a, b, c is an element of Fq*, over all finite fields of odd characteristic and obtain several new classes of such permutation quadrinomials. (c) 2022 Elsevier Inc. All rights reserved.
Description
Ozbudak, Ferruh/0000-0002-1694-9283
ORCID
Keywords
Permutation polynomials, Finite fields, Absolutely irreducible
Turkish CoHE Thesis Center URL
Fields of Science
Citation
3
WoS Q
Q2
Scopus Q
Q3
Source
Volume
87