Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 29
    Citation - Scopus: 33
    On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Mdpi, 2020) Aghnaiya, Alghannai; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) is one of the communication network's security techniques based on the identification of the unique features of RF transient signals. However, extracting these features could be burdensome, due to the nonstationary nature of transient signals. This may then adversely affect the accuracy of the identification of devices. Recently, it has been shown that the use of variational mode decomposition (VMD) in extracting features from Bluetooth (BT) transient signals offers an efficient way to improve the classification accuracy. To do this, VMD has been used to decompose transient signals into a series of band-limited modes, and higher order statistical (HOS) features are extracted from reconstructed transient signals. In this study, the performance bounds of VMD in RFF implementation are scrutinized. Firstly, HOS features are extracted from the band-limited modes, and then from the reconstructed transient signals directly. Performance comparison due to both HOS feature sets is presented. Moreover, the lower SNR bound within which the VMD can achieve acceptable accuracy in the classification of BT devices is determined. The approach has been tested experimentally with BT devices by employing a Linear Support Vector Machine (LSVM) classifier. According to the classification results, a higher classification performance is achieved (similar to 4% higher) at lower SNR levels (-5-5 dB) when HOS features are extracted from band-limited modes in the implementation of VMD in RFF of BT devices.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 14
    Performance Assessment of Transient Signal Detection Methods and Superiority of Energy Criterion (ec) Method
    (Ieee-inst Electrical Electronics Engineers inc, 2020) Mohamed, Ismail S.; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) based on RF transients is one of the most effective techniques for improving wireless security. For an efficient RFF development, RF transients need to be accurately detected. However, the detection of the transient starting point remains a main challenge due to the channel noise. In the literature, several methods have been presented to detect the starting point of the transient signals. As an alternative to these methods, this study proposes a method that utilizes Energy Criterion (EC) technique for the first time. In order to test its performance, firstly, an extensive dataset consisting of Wi-Fi signals recorded under realistic Signal-to-Noise Ratio (SNR) conditions is created. Using the provided dataset, the proposed method as well as common transient detection methods are employed for transient start detection. Then, the effect of SNR on the performance of transient start detection is evaluated. Moreover, a performance comparison between the methods is provided based on their respective computational speed and complexity. The results prove the feasibility and efficiency of the proposed method to detect the transient starting point for RFF of Wi-Fi device identification. As to the knowledge of the authors, this study is the first report that comparatively assesses the transient detection methods by using extensive data under realistic noise conditions.