On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices

No Thumbnail Available

Date

2020

Authors

Dalveren, Yaser
Kara, Ali

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Radio frequency fingerprinting (RFF) is one of the communication network's security techniques based on the identification of the unique features of RF transient signals. However, extracting these features could be burdensome, due to the nonstationary nature of transient signals. This may then adversely affect the accuracy of the identification of devices. Recently, it has been shown that the use of variational mode decomposition (VMD) in extracting features from Bluetooth (BT) transient signals offers an efficient way to improve the classification accuracy. To do this, VMD has been used to decompose transient signals into a series of band-limited modes, and higher order statistical (HOS) features are extracted from reconstructed transient signals. In this study, the performance bounds of VMD in RFF implementation are scrutinized. Firstly, HOS features are extracted from the band-limited modes, and then from the reconstructed transient signals directly. Performance comparison due to both HOS feature sets is presented. Moreover, the lower SNR bound within which the VMD can achieve acceptable accuracy in the classification of BT devices is determined. The approach has been tested experimentally with BT devices by employing a Linear Support Vector Machine (LSVM) classifier. According to the classification results, a higher classification performance is achieved (similar to 4% higher) at lower SNR levels (-5-5 dB) when HOS features are extracted from band-limited modes in the implementation of VMD in RFF of BT devices.

Description

Kara, Ali/0000-0002-9739-7619; Dalveren, Yaser/0000-0002-9459-0042

Keywords

Bluetooth signals, feature extraction, RF fingerprinting, signal classification, emitter identification, variational mode decomposition

Turkish CoHE Thesis Center URL

Fields of Science

Citation

24

WoS Q

Q2

Scopus Q

Source

Volume

20

Issue

6

Start Page

End Page

Collections