On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices

dc.contributor.author Aghnaiya, Alghannai
dc.contributor.author Dalveren, Yaser
dc.contributor.author Kara, Ali
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:38:24Z
dc.date.available 2024-07-05T15:38:24Z
dc.date.issued 2020
dc.description Kara, Ali/0000-0002-9739-7619; Dalveren, Yaser/0000-0002-9459-0042 en_US
dc.description.abstract Radio frequency fingerprinting (RFF) is one of the communication network's security techniques based on the identification of the unique features of RF transient signals. However, extracting these features could be burdensome, due to the nonstationary nature of transient signals. This may then adversely affect the accuracy of the identification of devices. Recently, it has been shown that the use of variational mode decomposition (VMD) in extracting features from Bluetooth (BT) transient signals offers an efficient way to improve the classification accuracy. To do this, VMD has been used to decompose transient signals into a series of band-limited modes, and higher order statistical (HOS) features are extracted from reconstructed transient signals. In this study, the performance bounds of VMD in RFF implementation are scrutinized. Firstly, HOS features are extracted from the band-limited modes, and then from the reconstructed transient signals directly. Performance comparison due to both HOS feature sets is presented. Moreover, the lower SNR bound within which the VMD can achieve acceptable accuracy in the classification of BT devices is determined. The approach has been tested experimentally with BT devices by employing a Linear Support Vector Machine (LSVM) classifier. According to the classification results, a higher classification performance is achieved (similar to 4% higher) at lower SNR levels (-5-5 dB) when HOS features are extracted from band-limited modes in the implementation of VMD in RFF of BT devices. en_US
dc.identifier.doi 10.3390/s20061704
dc.identifier.issn 1424-8220
dc.identifier.scopus 2-s2.0-85082265355
dc.identifier.uri https://doi.org/10.3390/s20061704
dc.identifier.uri https://hdl.handle.net/20.500.14411/3107
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Sensors
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bluetooth signals en_US
dc.subject feature extraction en_US
dc.subject RF fingerprinting en_US
dc.subject signal classification en_US
dc.subject emitter identification en_US
dc.subject variational mode decomposition en_US
dc.title On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kara, Ali/0000-0002-9739-7619
gdc.author.id Dalveren, Yaser/0000-0002-9459-0042
gdc.author.institutional Dalveren, Yaser
gdc.author.institutional Kara, Ali
gdc.author.scopusid 57211496508
gdc.author.scopusid 51763497600
gdc.author.scopusid 7102824862
gdc.author.wosid Kara, Ali/R-8038-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Aghnaiya, Alghannai] Coll Elect Technol, Dept Commun Engn, Bani Walid, Libya; [Dalveren, Yaser] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect Engn, Dept Elect Syst, N-2815 Gjovik, Norway; [Dalveren, Yaser] Atilim Univ, Dept Avion, Kizilcasar Mah, TR-06830 Ankara, Turkey; [Kara, Ali] Atilim Univ, Dept Elect & Elect Engn, Kizilcasar Mah, TR-06830 Ankara, Turkey en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1704
gdc.description.volume 20 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3010770867
gdc.identifier.pmid 32204301
gdc.identifier.wos WOS:000529139700162
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 23.0
gdc.oaire.influence 4.8611186E-9
gdc.oaire.isgreen true
gdc.oaire.keywords rf fingerprinting
gdc.oaire.keywords signal classification
gdc.oaire.keywords feature extraction
gdc.oaire.keywords emitter identification
gdc.oaire.keywords Chemical technology
gdc.oaire.keywords variational mode decomposition
gdc.oaire.keywords bluetooth signals
gdc.oaire.keywords RF fingerprinting
gdc.oaire.keywords TP1-1185
gdc.oaire.keywords Bluetooth signals
gdc.oaire.keywords Article
gdc.oaire.popularity 2.3963597E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 3.568
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 28
gdc.plumx.crossrefcites 29
gdc.plumx.mendeley 19
gdc.plumx.pubmedcites 9
gdc.plumx.scopuscites 32
gdc.scopus.citedcount 32
gdc.wos.citedcount 28
relation.isAuthorOfPublication 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections