Performance Assessment of Transient Signal Detection Methods and Superiority of Energy Criterion (ec) Method

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

Radio frequency fingerprinting (RFF) based on RF transients is one of the most effective techniques for improving wireless security. For an efficient RFF development, RF transients need to be accurately detected. However, the detection of the transient starting point remains a main challenge due to the channel noise. In the literature, several methods have been presented to detect the starting point of the transient signals. As an alternative to these methods, this study proposes a method that utilizes Energy Criterion (EC) technique for the first time. In order to test its performance, firstly, an extensive dataset consisting of Wi-Fi signals recorded under realistic Signal-to-Noise Ratio (SNR) conditions is created. Using the provided dataset, the proposed method as well as common transient detection methods are employed for transient start detection. Then, the effect of SNR on the performance of transient start detection is evaluated. Moreover, a performance comparison between the methods is provided based on their respective computational speed and complexity. The results prove the feasibility and efficiency of the proposed method to detect the transient starting point for RFF of Wi-Fi device identification. As to the knowledge of the authors, this study is the first report that comparatively assesses the transient detection methods by using extensive data under realistic noise conditions.

Description

Kara, Ali/0000-0002-9739-7619; Mohamed, Ismail Salem Khalifa/0000-0002-9010-7551

Keywords

Energy criterion, RF fingerprinting, transient signal detection, Wi-Fi signal

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1

Source

Volume

8

Issue

Start Page

115613

End Page

115620

Collections