15 results
Search Results
Now showing 1 - 10 of 15
Article Citation - WoS: 14Citation - Scopus: 12Electrochemical Synthesis of New Conjugated Polymers Based on Carbazole and Furan Units(Elsevier Science Sa, 2015) Oguzturk, H. Esra; Tirkes, Seha; Onal, Ahmet M.In this study, synthesis of four new monomers; 3,6-di(2-furyl)-9H-carbazole (M1), 3,6-di(2-furyl)-9-ethyl-carbazole (M2), 2,7-di(2-furyl)-9-H-carbazole (M3), 2,7-di(2-furyl)-9-(tridecan-7-yl)-9H-carbazole (M4), was achieved via Stifle cross-coupling reaction. The monomers were electrochemically polymerized, via repetitive cycling in acetonitrile-tetrabutylammonium hexafluorophosphate electrolytic medium. Optical and electrochemical properties of the monomers and their corresponding polymers were investigated and it was found that optical properties show slight variations depending on the connectivity between the carbazole and furan moieties. However, all the monomers synthesized in this work exhibited an irreversible oxidation peak at around 1.0 V. Electrochemically obtained polymer films, on the other hand, exhibited quasi-reversible redox behavior due to doping/dedoping of the polymers which was accompanied by a reversible electrochromic behavior. Their band gap values (E-g) were elucidated utilizing spectroelectrochemical data and it was found that polymers obtained from 2,7-substituted carbazole derivatives have slightly lower band gap values. Furthermore, scanning electron micrographs were used for morphological examinations. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Spectroelectrochemical Investigation of the Anodic Oxidation of Dibenzo-18(Elsevier Science Sa, 2004) Cihaner, A; Önal, AMPoly(dibenzo-18-crown-6) (poly-DB18C6) was synthesized by electrochemical oxidation of dibenzo-18-crown-6 (DB18C6) using a mixture of acetonitrile and dichloromethane as the solvent and tetrabutylammonium tetrafluoroborate (TBABF(4)) or tetrabutylammonium hexafluorophosphate (TBAPF(6)) as supporting electrolyte. The anodic polymerization of DB18C6 was investigated using in situ ESR and in situ UV-Vis spectroscopic techniques. Spectroelectrochemical (SPEL), properties and thermal analysis of the resulting polymers have been investigated using UV-Vis spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). (C) 2004 Elsevier B.V. All rights reserved.Article Citation - WoS: 23Citation - Scopus: 27Nanocrystalline Metal Organic Framework (mil-101) Stabilized Copper Nanoparticles: Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane(Elsevier Science Sa, 2018) Baguc, Ismail Burak; Ertas, Ilknur Efecan; Yurderi, Mehmet; Bulut, Ahmet; Zahmakiran, Mehmet; Kaya, MuratThe copper nanoparticles stabilized by nanocrystalline MIL-101 framework (Cu/nano-MIL-101) was reproducibly prepared by following double solvent method combined with liquid phase chemical reduction technique. The characterization of the resulting new material was done by using various analytical techniques including ICP-OES, P-XRD, N-2-adsorption-desorption, XPS, FE-SEM, SEM-EDX, BFTEM and HAADF-STEM; the summation of their results reveals that the formation of well-dispersed and very small sized (0.8 nm) copper nanoparticles within nanocrystalline MIL-101 framework. The catalytic performance of Cu/nano-MIL-101 in terms of activity and stability was tested in the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage. Cu/nano-MIL-101 catalyzes the hydrolytic dehydrogenation of methylamine borane with high activity (turnover frequency; TOF = 257 mot H-2/mol Cu x h) and conversion ( > 99%) under air at room temperature. Moreover, these nano-MIL-101 framework stabilized copper nanoparticles show great durability against to sintering and leaching, which make Cu/nano-MIL-101 reusable nanocatalyst in the hydrolytic dehydrogenation of methylamine-borane. Cu/nano-MIL-101 nanocatalyst retains 83% of its inherent activity at complete conversion even at 10th recycle in the hydrolytic dehydrogenation of methylamine borane.Article Citation - WoS: 7Citation - Scopus: 9Electrochemical Copolymerization of 2-Substituted Thiophene Derivative Linked by Polyether Bridge With Thiophene(Elsevier Science Sa, 2005) Cihaner, A; Önal, AMNew conducting copolymers have been synthesized via electrochemical oxidation of thiophene (Th) in the presence of monomer bis(2-thienyl)ethyl (1). Cyclic voltammetry (CV) studies showed that the presence of monomer I in the electrolytic solution greatly changes the CV behaviour of the formation of the polythiophene films. It is found that the increasing ratio of I was found to decrease electroactivity of copoly(I-Th). Electrochemical synthesis of copolymer films was achieved via constant potential electrolysis (CPE) in an electrolytic solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF(6)) dissolved in CH3CN. Spectroelectrochemical (SPEL) properties of the films were investigated using UV-vis spectroscopic technique. (C) 2005 Elsevier B.V. All rights reserved.Article Citation - WoS: 18Citation - Scopus: 19Effect of Furan, Thiophene and Selenophene Donor Groups on Benzoselenadiazole Based Donor-Acceptor Systems(Elsevier Science Sa, 2016) Karabay, Lutfiye Canan; Karabay, Bads; Karakoy, Merve Serife; Cihaner, AtillaA series of the monomers called 4,7-di(furan-2-yl)benzo[c][1,2,5]selenadiazole (OSeO), 4,7-di(thiophen-2-yl)benzo[c]11,2,5]selenadiazole (SSeS) and 4,7-di(selenophen-2-yl)benzo[c][1,2,5]selenadiazole (SeSeSe) was synthesized via a donor-acceptor-donor (D-A-D) approach. Benzoselenadiazole was used as an acceptor unit and furan, thiophene and selenophene were used as donor units. The effects of chalcogen atoms (0, S, and Se) in furan, thiophene and selenophene were investigated systematically on the properties of the monomers and their corresponding polymers (POSeO, PSSeS and PSeSeSe, respectively), which were polymerized electrochemically via potentiodynamic or potentiostatic methods. The monomers OSeO, SSeS and SeSeSe exhibited low oxidation potentials of 1.15, 1.25 and 1.19 V vs. Ag/AgCl, respectively. Intramolecular charge transfer interaction between donor and acceptor units was demonstrated from the emission spectra of the monomers. Also, the optical studies showed that the ambipolar and electrochromic polymers POSeO, PSSeS and PSeSeSe have low band gaps of 1.57, 1.47 and 1.45 eV, respectively. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 24Citation - Scopus: 25A Novel Conducting Polymer Based on Terthienyl System Bearing Strong Electron-Withdrawing Substituents and Its Electrochromic Device Application(Elsevier Science Sa, 2008) Asil, Demet; Cihaner, Atilla; Algi, Fatih; Onal, Ahmet M.A novel conducting polymer bearing strong electron-withdrawing substituents (EWS) directly attached to the 3,4-positions of the thiophene ring was synthesized by electrochemical polymerization of diethyl 2,5-di(thiophen-2-yl)thiophene-3,4-dicarboxylate (SSS-Diester). The polymer (PSSS-Diester) was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a reversible redox process and demonstrates a stable electrochromic behavior: reddish orange in the neutral state, brown in the intermediate state and green in the oxidized state. Optical density and response time of the dual-type electrochromic device based on PSSS-Diester were found to be 0.23 and 0.6 s at 623 nm, respectively. It is also noteworthy that the device shows good environmental and redox stability (i.e. 94% of the optical activity of the device retained after 500th switch). (c) 2008 Elsevier B.V. All rights reserved.Article Citation - WoS: 6Citation - Scopus: 6Synthesis and Polymerization of 2-And 3-Substituted Thiophene Derivatives Linked by Polyether Bridges(Elsevier Science Sa, 2004) Tirkes, S; Cihaner, A; Önal, AMNew compounds consisting of 2- and 3-thienyl units linked by polyether bridges have been synthesized and their electrochemical polymerization was performed via constant potential electrolysis (CPE) in an electrolytic solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF(6)) dissolved in CH3CN. 2-Thienyl monomers (I and II), but not 3-thienyl monomers (III and IV), were also polymerized via chemical oxidation, which yielded broken pi-conjugated polymer products. The polymers were characterized using H-1 NMR and FT-IR spectroscopic techniques. It was found that both chemical and electrochemical oxidation of 2-thienyl monomers gave mainly poly(2,2'-bithiophenemethylene) due to elimination of polyether chains during the polymerization reaction. On the other hand, electrochemical oxidation of 3-thienyl monomers resulted in corresponding polymers without any cleavage of polyether bridges. Spectroelectrochemical (SPEL) properties of the products were investigated using UV-Vis spectroscopic techniques. (C) 2004 Elsevier B.V. All rights reserved.Article Citation - WoS: 16Citation - Scopus: 16A New Carborane Based Polymeric Electrochrome(Elsevier Science Sa, 2013) Cansu-Ergun, Emine Gul; Cihaner, AtillaNew electrochromic copolymers of 3,4-ethylenedioxythiophene and di(m-carboranyl thiophene) were synthesized, characterized and their electro-optical properties were reported. The copolymers were successfully prepared from various monomer feed ratios using electrochemical polymerization technique. It can be conjectured that electrochemical and optical properties of the copolymers can be adjusted by playing with monomer feed ratios. For example, the maximum wavelength of poly(3,4-ethylenedioxythiophene) at 600 nm can be shifted to lower values (i.e., 522 nm) by increasing the ratio of di(m-carboranyl thiophene) in the monomer mixture. The copolymer films also have low band gap values between 1.69 and 1.82 eV and showed electrochromic properties; purple when neutralized and transparent sky blue when oxidized. Also, during redox switching the films exhibited a percent transmittance change between 32% and 46% with a switching time between 1.0 s and 1.3 s. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 65Citation - Scopus: 67An Electrochromic and Fluorescent Polymer Based on 1-(1(Elsevier Science Sa, 2008) Cihaner, Atilla; Algi, FatihA novel polymer was synthesized by electrochemical polymerization of 1-(1-naphthyl)-2,5-di-2-thienyl-1H-pyrrole (SNS-1-NAPH). The corresponding polymer (PSNS-1-NAPH) was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a very well-defined and reversible redox process in both organic and aqueous solutions. Furthermore, it shows stable electrochromic behavior; yellow in the neutral state, green in the intermediate state and violet in the oxidized state. PSNS-1-NAPH is soluble in common solvents. Although SNS-1-NAPH is almost nonfluorescent, its polymer is a yellow and/or green light emitter. (c) 2007 Elsevier B.V. All rights reserved.Article Citation - WoS: 11Citation - Scopus: 14Electrochemical Synthesis of New Conducting Copolymers Containing Pseudo-Polyether Cages With Pyrrole(Elsevier Science Sa, 2007) Cihaner, AtillaConducting copolymers have been synthesized via electrochemical oxidation of pyrrole (Py) in the presence of monomer 1, 11 -bis(1,1-pyrrole)-3,6,9-trioxaundecane (I) in an electrolytic solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF(6)) dissolved in acetonitrile. It is observed that reversible redox behavior of poly(I-co-Py)s shifts to more positive potentials with the increasing amount of I in the comonomer mixture, indicating formation of a copolymer. It is also found that increasing the ratio of I in the comonomer mixture decreases the conductivity of the obtained polymer films. The dark electrical conductivity measurements in the temperature range of 300-100 K revealed the extrinsic type of conduction with activation energy values being in the range of 82.3-16.9 meV. (c) 2007 Elsevier B.V. All rights reserved.

