Electrochemical Synthesis of New Conjugated Polymers Based on Carbazole and Furan Units

Loading...
Publication Logo

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this study, synthesis of four new monomers; 3,6-di(2-furyl)-9H-carbazole (M1), 3,6-di(2-furyl)-9-ethyl-carbazole (M2), 2,7-di(2-furyl)-9-H-carbazole (M3), 2,7-di(2-furyl)-9-(tridecan-7-yl)-9H-carbazole (M4), was achieved via Stifle cross-coupling reaction. The monomers were electrochemically polymerized, via repetitive cycling in acetonitrile-tetrabutylammonium hexafluorophosphate electrolytic medium. Optical and electrochemical properties of the monomers and their corresponding polymers were investigated and it was found that optical properties show slight variations depending on the connectivity between the carbazole and furan moieties. However, all the monomers synthesized in this work exhibited an irreversible oxidation peak at around 1.0 V. Electrochemically obtained polymer films, on the other hand, exhibited quasi-reversible redox behavior due to doping/dedoping of the polymers which was accompanied by a reversible electrochromic behavior. Their band gap values (E-g) were elucidated utilizing spectroelectrochemical data and it was found that polymers obtained from 2,7-substituted carbazole derivatives have slightly lower band gap values. Furthermore, scanning electron micrographs were used for morphological examinations. (C) 2015 Elsevier B.V. All rights reserved.

Description

Onal, ahmet muhtar/0000-0003-0644-7180

Keywords

Carbazole, Furan, Electrochromic polymers, Conjugated polymers, Electrochromic polymers, Carbazole, Furan, Conjugated polymers

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q1

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
16

Source

Journal of Electroanalytical Chemistry

Volume

750

Issue

Start Page

1

End Page

8

Collections

PlumX Metrics
Citations

CrossRef : 13

Scopus : 12

Captures

Mendeley Readers : 17

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.81299178

Sustainable Development Goals