85 results
Search Results
Now showing 1 - 10 of 85
Article Citation - WoS: 46Citation - Scopus: 51Multiscale modeling of tempering of AISI H13 hot-work tool steel - Part 1: Prediction of microstructure evolution and coupling with mechanical properties(Elsevier, 2016) Eser, A.; Broeckmann, C.; Simsir, C.In the first part of this two part study, the mechanical properties necessary for the simulation of tempering of an AISI H13 (DIN 1.2344, X40CrMoV5-1) tool steel was derived using physically based precipitation simulations and microstructure-property relationships. For this purpose, the precipitation of fine carbides were simulated using a thermo-kinetic software which allows prediction of the evolution of precipitation/dissolution reactions and the particle sizes. Then, those microstructural findings were coupled with physically based microstructure-property models to predict the yield stress, flow curve and creep properties. The predicted mechanical properties were verified with corresponding experiments and a good agreement was found. In the second part of this study, those properties were coupled with a Finite Element (FE) model in order to predict the relaxation of internal stresses and the evolution of deformations at the macroscopic scale. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 12Citation - Scopus: 11The Relationship Between Different Price Indices: Evidence From Turkey(Elsevier, 2006) Akdi, Y; Berument, H; Cilasun, SMA possible relationship between the Consumer Price Index and the Wholesale Price Index has been analyzed for long and short-run relationships. Conventional Engle and Granger [Estimation Test Econ. 55(1987) 2251-276] and Johansen's [J. Econ. Dyn. Control 12 (1988) 231-254] cointegration tests give mixed evidence for a possible long-run relationship between those two series. The model-free and seasonally robust peri odogram-based test fails to reject the null of no-cointegration relationship. However, these two series move together in the short run. (c) 2005 Elsevier B.V. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Absorption Edge and Optical Constants of Tl2ga2< Crystals From Reflection and Transmission, and Ellipsometric Measurements(Elsevier, 2012) Isik, M.; Gasanly, N. M.The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies. Spectroscopic ellipsometry measurements on Tl2Ga2S3Se crystals were carried out on the layer-plane (0 0 1) surfaces with light polarization E perpendicular to c* in the 1.20-4.70 eV spectral range at room temperature. The real and imaginary parts of the dielectric function as well as refractive and absorption indices were found as a result of analysis of ellipsometric data. The Wemple-DiDomenico single-effective-oscillator model was used to study the dispersion of the refractive index in the below band gap energy range. The structures of critical points have been characterized from the second derivative spectra of the dielectric function. The analysis revealed four interband transition structures with 3.14, 3.40, 3.86 and 4.50 eV critical point energies. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 22Citation - Scopus: 24Synthesis and Temperature-Tuned Band Gap Characteristics of Magnetron Sputtered Znte Thin Films(Elsevier, 2020) Isik, M.; Gullu, H. H.; Parlak, M.; Gasanly, N. M.Zinc telluride (ZnTe) is one of the attractive semiconducting compounds used in various optoelectronic devices. The usage of ZnTe in optoelectronic applications directs researchers to search its optical characteristics in great detail. For this purpose, structural and optical properties of magnetron sputtered ZnTe thin films were studied by means of x-ray diffraction and transmission spectroscopy measurements. Structural analyses indicated that ZnTe thin films having cubic crystalline structure were successfully grown on soda-lime glass substrates. Transmittance spectra in the 400-1000 nm were recorded in between 10 and 300 K temperature region. The analyses of absorption coefficient spectra resulted in band gap energies decreasing from around 2.31 (10 K) to 2.26 eV (300 K). Temperature dependency of gap energy was studied by Varshni and O'Donnell-Chen relations to determine various optical parameters like absolute zero temperature band gap energy, change of gap energy with temperature, phonon energy.Article Citation - WoS: 35Citation - Scopus: 45Study on the Cytocompatibility, Mechanical and Antimicrobial Properties of 3d Printed Composite Scaffolds Based on Pva/ Gold Nanoparticles (aunp)/ Ampicillin (amp) for Bone Tissue Engineering(Elsevier, 2021) Topsakal, Aysenur; Midha, Swati; Yuca, Esra; Tukay, Ari; Sasmazel, Hilal Turkoglu; Kalaskar, Deepak M.; Gunduz, OguzhanOver the years, gold nanoparticles (AuNP) have been widely used in several biomedical applications related to the diagnosis, drug delivery, bio-imaging, photo-thermal therapy and regenerative medicine, owing to their unique features such as surface plasmon resonance, fluorescence and easy surface functionality. Recent studies showed that gold nanoparticles display positive effect on osteogenic differentiation. In line with this effect, 3-Dimesional (3D) scaffolds that can be used in bone tissue were produced by exploiting the properties of gold nanoparticles that increase biocompatibility and support bone tissue development. In addition, ampicillin was added to the scaffolds containing gold nanoparticles as a model drug to improve its antimicrobial properties. The scaffolds were produced as composites of polyvinyl alcohol (PVA) main matrix as PVA, PVA/AuNP, PVA/Ampicillin (AMP) and PVA/AuNP/AMP. Scanning Electron Microscopy (SEM) Fourier Transform Infrared Spectroscopy (FTIR), tensile measurement tests, and in vitro applications of 3D scaffolds were performed. As depicted by SEM, scaffolds were produced at pore sizes appropriate for bone tissue regeneration. According to FTIR results, there was no modification observed in the AMP, PVA and gold nanoparticles due to mixing in the resultant scaffolds. In vitro results show that 3D printed composite scaffold based on PVA/AuNP/AMP are biocompatible, osteo-inductive and exhibit antimicrobial properties, compared to PVA scaffolds. This study has implications for addressing infections during orthopedic surgeries. The PVA-based gold nanoparticle 3D tissue scaffold study containing ampicillin covers a new study compared to other articles based on gold nanoparticles.Article Citation - WoS: 113Citation - Scopus: 147Experiments and Finite Element Simulations on Micro-Milling of Ti-6al Alloy With Uncoated and Cbn Coated Micro-Tools(Elsevier, 2011) Oezel, T.; Thepsonthi, T.; Ulutan, D.; Kaftanoglu, B.This paper presents experimental investigations and finite element simulations on micro-milling of Ti-6Al-4V alloy with fine grain uncoated and cBN coated micro-end mills. Micro-milling of Ti-6Al-4V using uncoated and cBN coated tungsten carbide micro-end mills are conducted; surface roughness, burr formation and tool wear are measured. Effects of machining parameters on surface roughness, burr formation, and tool wear for uncoated and cBN coated micro-tools are investigated. Finite element modelling is utilized to predict forces, temperatures, and wear rate for uncoated and cBN coated micro-tools. Predicted temperature and tool wear contours for uncoated and cBN coated micro-tool edges reveal advantages of cBN coatings. Optimization studies on the experimental results are also conducted to identify the optimum process parameters which minimize both surface roughness and burr formation concurrently. (C) 2011 CIRP.Article Citation - WoS: 30Citation - Scopus: 30New approach to stability of 2-D discrete systems with state saturation(Elsevier, 2012) Singh, VimalA new criterion for the global asymptotic stability of 2-D discrete systems described by the Roesser model using saturation arithmetic is presented. The criterion is a generalization over an earlier criterion due to Liu and Michel. The generalized criterion has the feature that Lyapunov matrix P is not restricted to be symmetric, i.e., P can be even unsymmetric. A modified form of the criterion is also presented. Two examples showing the effectiveness of the generalized approach to yield new 2-D stability results are provided. To the best of author's knowledge, the use of unsymmetric P to obtain new 2-D stability conditions (i.e., conditions which are outside the scope of symmetric P) is demonstrated, for first time, in this paper. (C) 2011 Elsevier B.V. All rights reserved.Article Citation - WoS: 22Citation - Scopus: 22Wavelength Dependence of the Nonlinear Absorption Performance and Optical Limiting in Bi12tio20 Single Crystal(Elsevier, 2023) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, AyhanIn this study, the influence of excitation wavelength and input intensity on the nonlinear absorption (NA) mechanism and optical limiting behavior of the Bi12TiO20 (BTO) single crystal were reported. The energy band gap of the BTO single crystal was obtained to be 2.38 eV. Urbach energy revealed that the single crystal has a highly defective structure. Open aperture (OA) Z-scan experiments were conducted at 532 and 1064 nm exci-tation wavelengths at various input intensities. Obtained experimental data were analyzed with a theoretical model considering one photon, two-photon and free carrier absorption contributions to NA. The obtained results revealed that the BTO single crystal possesses NA. The NA coefficient increased with increasing input intensity at 532 nm excitation wavelength, while it decreased with increasing input intensity at 1064 nm excitation wave-length. Due to the intense localized defect states distribution at the energy of 532 nm excitation wavelength within the band gap, increasing contribution to NA came from one photon absorption (OPA), sequential two -photon absorption (TPA) and free carrier absorption (FCA) with increasing input intensity. The filling of the defect states at 1064 excitation wavelength caused a reduction in NA due to increasing saturable absorption with increasing input intensity. TPA coefficients were also found from the fitting ignoring the defect states. As ex-pected, the values of the nonlinear absorption coefficient beta eff are higher than that of the TPA coefficients for both excitation wavelengths. The optical limiting threshold of the BTO single crystal was obtained to be 6.62 mJ/cm2. The results of the present works indicated that BTO single crystal can be used as a potential optical limiter.Article Citation - WoS: 3Citation - Scopus: 3Fabrication of Cdsexte1-X Thin Films by Sequential Growth Using Double Sources(Elsevier, 2021) Demir, M.; Gullu, H. H.; Terlemezoglu, M.; Parlak, M.CdSexTe(1-x) (CST) ternary thin films were fabricated by stacking thermally evaporated CdSe and electron beam evaporated CdTe layers. The final structure was achieved in a stoichiometric form of approximately Cd:Se:Te = 50:25:25. The post-annealing processes at 300, 400, and 450 degrees C were applied to trigger the compound formation of CST thin films. The X-ray diffraction (XRD) profiles revealed that CdTe and CdSe have major peaks at 23.9 degrees and 25.5 degrees corresponds to (111) direction in cubic zinc-blend structure. Raman modes of CdTe were observed at 140 and 168 cm(-1), while Raman modes of CdSe films were detected at 208 and 417 cm(-1). The post-annealing process was found to be an effective method in order to combine both diffraction peaks and the vibrational modes of CdTe and CdSe, consequently to form CST ternary alloy. Transmission spectroscopy analysis revealed that CST films have direct band gap value of 1.6 eV.Article Citation - WoS: 3Citation - Scopus: 6Structural and Optical Properties of Thermally Evaporated Cu-Ga (cgs) Thin Films(Elsevier, 2018) Gullu, H. H.; Isik, M.; Gasanly, N. M.The structural and optical properties of thermally evaporated Cu-Ga-S (CGS) thin films were investigated by Xray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM) and optical transmittance measurements. The effect of annealing temperature on the results of applied techniques was also studied in the present paper. EDS results revealed that each of the elements, Cu, Ga and S are presented in the films and Cu and Ga concentration increases whereas S concentration decreases within the films as annealing temperature is increased. XRD pattern exhibited four diffraction peaks which are well-matched with those of tetragonal CuGaS2 compound. AFM images were recorded to get knowledge about the surface morphology and roughness of deposited thin films. Transmittance measurements were applied in the wavelength region of 300-1000 nm. Analyses of the absorption coefficient derived from transmittance data resulted in presence of three distinct transition regions in each thin films with direct transition type. Crystal-field and spin-orbit splitting energies existing due to valence band splitting were also calculated using quasicubic model.

