9 results
Search Results
Now showing 1 - 9 of 9
Article Citation - WoS: 5Citation - Scopus: 5Absorption Edge and Optical Constants of Tl2ga2< Crystals From Reflection and Transmission, and Ellipsometric Measurements(Elsevier, 2012) Isik, M.; Gasanly, N. M.The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies. Spectroscopic ellipsometry measurements on Tl2Ga2S3Se crystals were carried out on the layer-plane (0 0 1) surfaces with light polarization E perpendicular to c* in the 1.20-4.70 eV spectral range at room temperature. The real and imaginary parts of the dielectric function as well as refractive and absorption indices were found as a result of analysis of ellipsometric data. The Wemple-DiDomenico single-effective-oscillator model was used to study the dispersion of the refractive index in the below band gap energy range. The structures of critical points have been characterized from the second derivative spectra of the dielectric function. The analysis revealed four interband transition structures with 3.14, 3.40, 3.86 and 4.50 eV critical point energies. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 12Citation - Scopus: 12Interband Transitions in Gallium Sulfide Layered Single Crystals by Ellipsometry Measurements(Elsevier, 2013) Isik, M.; Gasanly, N. M.; Turan, R.Spectroscopic ellipsometry measurements on the GaS single crystals are presented in the energy range of 1.2 - 6.2 eV at room temperature. Optical constants; pseudorefractive index, pseudoextinction coefficient, real and imaginary parts of the pseudodielectric function were determined. Analysis of the second derivative of real and imaginary parts of the pseudodielectric constant revealed five transitions with critical point energies of 3.95, 4.22, 4.51, 4.75 and 5.50 eV. These energies were assigned to interband transitions according to theoretical study of GaS band structure available in literature. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 8Study of Vibrational Modes in (ga2s3< - (ga2se3< Mixed Crystals by Raman and Infrared Reflection Measurements(Elsevier, 2019) Isik, M.; Guler, I.; Gasanly, N. M.Raman and infrared (IR) reflection characteristics were investigated in the frequency region of 100-450 cm(-1) for (Ga2S3)(x) - (Ga2Se3)(1-x) mixed crystals for compositions of x increasing from 0.0 to 1.0 by intervals of 0.25 obtained by Bridgman crystal growth technique. In the Raman spectra of these crystals four dominant peak features were observed while two bands were detected in the IR spectra of interest samples. Kramers-Kronig dispersion relations applied to IR spectra presented the frequencies of transverse optical modes. The compositional dependencies of revealed Raman- and IR-active mode frequencies on (Ga2S3)(x) - (Ga2Se3)(1-x) crystals were established. One-mode behavior was displayed from indicated dependencies.Article Citation - WoS: 4Citation - Scopus: 5Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals(Elsevier, 2022) Isik, M.; Sarigul, N.; Gasanly, N. M.GaSe and Ga2Se3 are semiconducting compounds formed from same constituent elements. These compounds have been attractive due to their optoelectronic and photovoltaic applications. Defects take remarkable attention since they affect quality of semiconductor devices. In the present paper, deep defect centers in GaSe and Ga2Se3 single crystals grown by Bridgman method were reported from the analyses of thermoluminescence measurements performed in the 350-675 K range. Experimental TL curves of GaSe and Ga2Se3 single crystals presented one and two overlapped peaks, respectively. The applied curve fitting and initial rise techniques were in good agreement about trap activation energies of 0.83 eV for GaSe, 0.96 and 1.24 eV for Ga2Se3 crystals. Crystalline structural properties of the grown single crystals were also investigated by x-ray diffraction measurements. The peaks observed in XRD patterns of the GaSe and Ga2Se3 crystals were well-consistent with hexagonal and zinc blende structures, respectively.Article Citation - WoS: 5Citation - Scopus: 6Thermoluminescence Properties and Trapping Parameters of Tlgas2 Single Crystals(Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.TlGaS2 layered single crystals have been an attractive research interest due to their convertible characteristics into 2D structure. In the present paper, structural, optical and thermoluminescence properties of TlGaS2 single crystals were investigated. XRD pattern of the crystal presented five well-defined peaks associated with monoclinic unit cell. Band gap and Urbach energies were found to be 2.57 and 0.25 eV, respectively, from the analyses of transmittance spectrum. Thermoluminescence measurements were carried out above room temperature up to 660 K at various heating rates. One TL peak with peak maximum temperature of 573 K was obtained in the TL spectrum at 1.0 K/s. Curve fitting, initial rise and variable heating rate methods were used for analyses. All of those resulted in presence of a deep trapping level with activation energy around 0.92 eV. Heating rate dependence of the TL peak was also studied and it was indicated that peak maximum temperature shifted to higher temperatures besides decreasing TL intensity as the higher heating rates were employed.Article Citation - WoS: 11Citation - Scopus: 11Ellipsometry Study of Interband Transitions in Tlgas2x< Mixed Crystals (0 ≤ x ≤ 1)(Elsevier, 2012) Isik, M.; Gasanly, N. M.In this paper, the spectroscopic ellipsometry measurements on TlGaS2xSe2(1 - x) mixed crystals (0 <= x <= 1) were carried out on the layer-plane (001) surfaces with light polarization E perpendicular to c* in the 1.2-6.2 eV spectral range at room temperature. The real and imaginary parts of the dielectric function, refractive index and extinction coefficient were calculated from ellipsometric data using the ambient-substrate optical model. The critical point energies in the above-band gap energy range have been obtained from the second derivative spectra of the dielectric function. Particularly for TlGaSe2 crystals, the determined critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure. The effect of the isomorphic anion substitution (sulfur for selenium) on critical point energies in TlGaS2xSe2(1 - x) mixed crystals was established. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 10Ellipsometry Study of Optical Parameters of Agin5s8< Crystals(Elsevier, 2015) Isik, Mehmet; Gasanly, NizamiAgln(5)S(8) crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometiy experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy. (C) 2015 Elsevier B.V. All rights reservedArticle Citation - WoS: 12Citation - Scopus: 13Low-Temperature Thermoluminescence in Tlgas2 Layered Single Crystals(Elsevier, 2013) Isik, M.; Bulur, E.; Gasanly, N. M.Thermoluminescence (TL) measurements have been carried out on TlGaS2 layered single crystals in the temperature range of 10-300 K. After illuminating with blue light (similar to 470 nm) at 10 K, TL glow curves exhibited peaks around 23, 36, 58, 75 and 120 K when measured with a heating rate of 0.8 K/s. The observed peaks were analyzed using curve fitting, initial rise, and peak shape methods to determine the activation energies of the associated defect centers. Analyses have revealed the presence of five defect centers with activation energies of 13, 27, 87, 94 and 291 meV. The results of all methods were found to be in good agreement with each other. The consistency between the theoretical predictions for slow retrapping and experimental results showed that the retrapping process for the observed centers was negligible. The independence of peak position from concentration of carriers trapped in defect levels was also another indication of negligible retrapping. The dependence of TL glow curves on heating rate and distribution of traps was also studied. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 12Citation - Scopus: 12First Principles Study of Bi12geo20< Electronic, Optical and Thermodynamic Characterizations(Elsevier, 2021) Isik, M.; Işık, Mehmet; Surucu, G.; Gencer, A.; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringBismuth germanium oxide (Bi12GeO20) is one of the attractive members of sillenite compounds having fascinating photorefractive characteristics. The electronic, optical and thermodynamic properties of Bi12GeO20 were investigated using density functional theory (DFT) calculations. The experimental and calculated X-ray diffraction patterns were obtained as well-consistent with each other. The lattice constant of the cubic crystalline structure of Bi12GeO20 compound was calculated as 10.304 angstrom. The electronic band structure and partial density of states plots were reported and contribution of constituent atoms (Bi12GeO20) to the valence and conduction bands was presented. The band gap energy of the Bi12GeO20 was calculated as 3.20 eV. This wide direct band gap energy provides Bi12GeO20 significant potential in ultraviolet applications. The spectra of real and imaginary components of dielectric function, refractive index, extinction coefficient and absorption coefficient were drawn in the 0-10 eV energy range. Temperature-dependent heat capacity plot indicated the Dulong-Petit limit as 825 J/mol.K. The results of the present study would present worthwhile information to device application areas of Bi12GeO20 compound.

