Low-Temperature Thermoluminescence in Tlgas<sub>2</Sub> Layered Single Crystals

No Thumbnail Available

Date

2013

Authors

Isik, M.
Işık, Mehmet
Bulur, E.
Gasanly, N. M.

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Thermoluminescence (TL) measurements have been carried out on TlGaS2 layered single crystals in the temperature range of 10-300 K. After illuminating with blue light (similar to 470 nm) at 10 K, TL glow curves exhibited peaks around 23, 36, 58, 75 and 120 K when measured with a heating rate of 0.8 K/s. The observed peaks were analyzed using curve fitting, initial rise, and peak shape methods to determine the activation energies of the associated defect centers. Analyses have revealed the presence of five defect centers with activation energies of 13, 27, 87, 94 and 291 meV. The results of all methods were found to be in good agreement with each other. The consistency between the theoretical predictions for slow retrapping and experimental results showed that the retrapping process for the observed centers was negligible. The independence of peak position from concentration of carriers trapped in defect levels was also another indication of negligible retrapping. The dependence of TL glow curves on heating rate and distribution of traps was also studied. (C) 2012 Elsevier B.V. All rights reserved.

Description

Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686; Bulur, Enver/0000-0002-4000-7966

Keywords

Semiconductors, Thermoluminescence, Defects

Turkish CoHE Thesis Center URL

Fields of Science

Citation

12

WoS Q

Q2

Scopus Q

Source

Volume

135

Issue

Start Page

60

End Page

65

Collections