5 results
Search Results
Now showing 1 - 5 of 5
Conference Object Citation - WoS: 1Citation - Scopus: 1A Novel Method To Detect Shadows on Multispectral Images(Spie-int Soc Optical Engineering, 2016) Sevim, Hazan Daglayan; Cetin, Yasemin Yardimci; Baskurt, Didem OzisikShadowing occurs when the direct light coming from a light source is obstructed by high human made structures, mountains or clouds. Since shadow regions are illuminated only by scattered light, true spectral properties of the objects are not observed in such regions. Therefore, many object classification and change detection problems utilize shadow detection as a preprocessing step. Besides, shadows are useful for obtaining 3D information of the objects such as estimating the height of buildings. With pervasiveness of remote sensing images, shadow detection is ever more important. This study aims to develop a shadow detection method on multispectral images based on the transformation of C-1 C-2 C-3 space and contribution of NIR bands. The proposed method is tested on Worldview-2 images covering Ankara, Turkey at different times. The new index is used on these 8-band multispectral images with two NIR bands. The method is compared with methods in the literature.Conference Object Citation - Scopus: 2Design Optimization of Cassegrain Telescope for Remote Explosive Trace Detection(Spie-int Soc Optical Engineering, 2017) Bhavsar, Kaushalkumar; Eseller, K. E.; Prabhu, RadhakrishnaThe past three years have seen a global increase in explosive-based terror attacks. The widespread use of improvised explosives and anti-personnel landmines have caused thousands of civilian casualties across the world. Current scenario of globalized civilization threat from terror drives the need to improve the performance and capabilities of standoff explosive trace detection devices to be able to anticipate the threat from a safe distance to prevent explosions and save human lives. In recent years, laser-induced breakdown spectroscopy (LIBS) is an emerging approach for material or elemental investigations. All the principle elements on the surface are detectable in a single measurement using LIBS and hence, a standoff LIBS based method has been used to remotely detect explosive traces from several to tens of metres distance. The most important component of LIBS based standoff explosive trace detection system is the telescope which enables remote identification of chemical constituents of the explosives. However, in a compact LIBS system where Cassegrain telescope serves the purpose of laser beam delivery and light collection, need a design optimization of the telescope system. This paper reports design optimization of a Cassegrain telescope to detect explosives remotely for LIBS system. A design optimization of Schmidt corrector plate was carried out for Nd:YAG laser. Effect of different design parameters was investigated to eliminate spherical aberration in the system. Effect of different laser wavelengths on the Schmidt corrector design was also investigated for the standoff LIBS system.Conference Object Citation - WoS: 1Citation - Scopus: 2Utilizing Hyperspectral Remote Sensing Imagery for Afforestation Planning of Partially Covered Areas(Spie-int Soc Optical Engineering, 2015) Omruuzun, Fatih; Baskurt, Didem Ozisik; Daglayan, Hazan; Cetin, Yasemin YardimciIn this study, a supportive method for afforestation planning process of partially forested areas using hyperspectral remote sensing imagery has been proposed. The algorithm has been tested on a scene covering METU campus area that is acquired by high resolution hyperspectral push-broom sensor operating in visible and NIR range of the electromagnetic spectrum. The main contribution of this study to the literature is segmentation of partially forested regions with a semi-supervised classification of specific tree species based on chlorophyll content quantified in hyperspectral scenes. In addition, the proposed method makes use of various hyperspectral image processing algorithms to improve identification accuracy of image regions to be planted.Conference Object Citation - WoS: 1Citation - Scopus: 3Boundary Element Method for Optical Force Calibration in Microfluidic Dual-Beam Optical Trap(Spie-int Soc Optical Engineering, 2015) Solmaz, Mehmet E.; Cetin, Barbaros; Baranoglu, Besim; Serhathoglu, Murat; Biyikh, NeemiThe potential use of optical forces in microfluidic environment enables highly selective bio-particle manipulation. Manipulation could be accomplished via trapping or pushing a particle due to optical field. Empirical determination of optical force is often needed to ensure efficient operation of manipulation. The external force applied to a trapped particle in a microfluidic channel is a combination of optical and drag forces. The optical force can be found by measuring the particle velocity for a certain laser power level and a multiplicative correction factor is applied for the proximity of the particle to the channel surface. This method is not accurate especially for small microfluidic geometries where the particle size is in Mie regime and is comparable to channel cross section. In this work, we propose to use Boundary Element Method (BEM) to simulate fluid flow within the micro-channel with the presence of the particle to predict drag force. Pushing experiments were performed in a dual-beam optical trap and particle's position information was extracted. The drag force acting on the particle was then obtained using BEM and other analytical expressions, and was compared to the calculated optical force. BEM was able to predict the behavior of the optical force due to the inclusion of all the channel walls.Conference Object Citation - WoS: 6Citation - Scopus: 9Shadow Removal From Vnir Hyperspectral Remote Sensing Imagery With Endmember Signature Analysis(Spie-int Soc Optical Engineering, 2015) Omruuzun, Fatih; Baskurt, Didem Ozisik; Daglayan, Hazan; Cetin, Yasemin YardimciThis study aims to develop an effective regional shadow removal algorithm using rich spectral information existing in hyperspectral imagery. The proposed method benefits from spectral similarity of shadow and neighboring nonshadow pixels regardless of the intensity values. Although the shadow area has lower reflectance values due to inadequacy of incident light, it is expected that this area contains similar spectral characteristics with nonshadow area. Using this assumption, the endmembers in both shadowed and nonshadow area are extracted by Vertex Component Analysis (VCA). On the other hand, HySime algorithm overcomes estimating number of endmembers, which is one of the challenging parts in hyperspectral unmixing. Therefore, two sets of endmembers are extracted independently for both shadowed and nonshadow area. The proposed study aims at revealing the relation between these two endmember sets by comparing their pairwise similarities. Finally, reflectance values of shadowed pixels are re-calculated separately for each spectral band of hyperspectral image using this information.

