Boundary Element Method for Optical Force Calibration in Microfluidic Dual-Beam Optical Trap
No Thumbnail Available
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Spie-int Soc Optical Engineering
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The potential use of optical forces in microfluidic environment enables highly selective bio-particle manipulation. Manipulation could be accomplished via trapping or pushing a particle due to optical field. Empirical determination of optical force is often needed to ensure efficient operation of manipulation. The external force applied to a trapped particle in a microfluidic channel is a combination of optical and drag forces. The optical force can be found by measuring the particle velocity for a certain laser power level and a multiplicative correction factor is applied for the proximity of the particle to the channel surface. This method is not accurate especially for small microfluidic geometries where the particle size is in Mie regime and is comparable to channel cross section. In this work, we propose to use Boundary Element Method (BEM) to simulate fluid flow within the micro-channel with the presence of the particle to predict drag force. Pushing experiments were performed in a dual-beam optical trap and particle's position information was extracted. The drag force acting on the particle was then obtained using BEM and other analytical expressions, and was compared to the calculated optical force. BEM was able to predict the behavior of the optical force due to the inclusion of all the channel walls.
Description
Cetin, Barbaros/0000-0001-9824-4000; Baranoglu, Besim/0000-0003-2005-050X; Cetin, Barbaros/0000-0001-9824-4000; BIYIKLI, Necmi/0000-0001-9387-5145
Keywords
Microfluidics, dual-beam optical trapping, optical force, boundary element method
Turkish CoHE Thesis Center URL
Fields of Science
Citation
1
WoS Q
Scopus Q
Q4
Source
Conference on Optical Trapping and Optical Micromanipulation XII -- AUG 09-12, 2015 -- San Diego, CA
Volume
9548