Shadow Removal from VNIR Hyperspectral Remote Sensing Imagery with Endmember Signature Analysis

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Spie-int Soc Optical Engineering

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).
Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

This study aims to develop an effective regional shadow removal algorithm using rich spectral information existing in hyperspectral imagery. The proposed method benefits from spectral similarity of shadow and neighboring nonshadow pixels regardless of the intensity values. Although the shadow area has lower reflectance values due to inadequacy of incident light, it is expected that this area contains similar spectral characteristics with nonshadow area. Using this assumption, the endmembers in both shadowed and nonshadow area are extracted by Vertex Component Analysis (VCA). On the other hand, HySime algorithm overcomes estimating number of endmembers, which is one of the challenging parts in hyperspectral unmixing. Therefore, two sets of endmembers are extracted independently for both shadowed and nonshadow area. The proposed study aims at revealing the relation between these two endmember sets by comparing their pairwise similarities. Finally, reflectance values of shadowed pixels are re-calculated separately for each spectral band of hyperspectral image using this information.

Description

Omruuzun, Fatih/0000-0001-8164-8586; Daglayan, Hazan/0009-0006-4843-6913

Keywords

airborne hyperspectral imaging, shadow removal, hyperspectral unmixing

Turkish CoHE Thesis Center URL

Citation

6

WoS Q

Scopus Q

Q4

Source

Conference on Next-Generation Spectroscopic Technologies VIII -- APR 20-22, 2015 -- Baltimore, MD

Volume

9482

Issue

Start Page

End Page

Collections