16 results
Search Results
Now showing 1 - 10 of 16
Article Citation - WoS: 6Citation - Scopus: 7A Simplified Method Based on Rssi Fingerprinting for Iot Device Localization in Smart Cities(Ieee-inst Electrical Electronics Engineers inc, 2024) Dogan, Deren; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThe Internet of Things (IoT) has significantly improved location-based services in smart cities, such as automated public transportation and traffic management. Estimating the location of connected devices is a critical problem. Low Power Wide Area Network (LPWAN) technologies are used for localization due to their low power consumption and long communication range. Recent advances in Machine Learning have made Received Signal Strength Indicator (RSSI) fingerprinting with LPWAN technologies effective. However, this requires a connection between devices and gateways or base stations, which can increase network deployment, maintenance, and installation costs. This study proposes a cost-effective RSSI fingerprinting solution using IQRF technology for IoT device localization. The region of interest is divided into grids to provide training locations, and measurements are conducted to create a training dataset containing RSSI fingerprints. Pattern matching is performed to localize the device by comparing the fingerprint of the end device with the fingerprints in the created database. To evaluate the efficiency of the proposed solution, measurements were conducted in a short-range local area ( $80\times 30$ m) at 868 MHz. In the measurements, four IQRF nodes were utilized to receive the RSSIs from a transmitting IQRF node. The performances of well-known ML classifiers on the created dataset are then comparatively assessed in terms of test accuracy, prediction speed, and training time. According to the results, the Bagged Trees classifier demonstrated the highest accuracy with 96.87%. However, with an accuracy of 95.69%, the Weighted k-NN could also be a reasonable option for real-world implementations due to its faster prediction speed (37615 obs/s) and lower training time (28.1 s). To the best of the authors' knowledge, this is the first attempt to explore the feasibility of the IQRF networks to develop a RSSI fingerprinting-based IoT device localization in the literature. The promising results suggest that the proposed method could be used as a low-cost alternative for IoT device localization in short-range location-based smart city applications.Conference Object Citation - Scopus: 6A Mini-Review on Radio Frequency Fingerprinting Localization in Outdoor Environments: Recent Advances and Challenges(Institute of Electrical and Electronics Engineers Inc., 2022) Dogan,D.; Dalveren,Y.; Kara,A.A considerable growth in demand for locating the source of emissions in outdoor environments has led to the rapid development of various localization methods. Among these, RF fingerprinting (RFF) localization has become one of the most promising method due to its unique advantages resulted from the recent developments in machine learning techniques. In this short review, it is aimed to assess the existing RFF methods in the literature for outdoor localization. For this purpose, firstly, the current state of RFF localization methods in outdoor environments are overviewed. Then, the main research challenges in the development of RFF localization are highlighted. This is followed by a brief discussion on the open issues in order to give future research directions. Furthermore, the research efforts currently undertaken by the authors are briefly addressed. © 2022 IEEE.Article Citation - WoS: 18Citation - Scopus: 23A Novel Hybrid Machine Learning Based System To Classify Shoulder Implant Manufacturers(Mdpi, 2022) Sivari, Esra; Guzel, Mehmet Serdar; Bostanci, Erkan; Mishra, AlokIt is necessary to know the manufacturer and model of a previously implanted shoulder prosthesis before performing Total Shoulder Arthroplasty operations, which may need to be performed repeatedly in accordance with the need for repair or replacement. In cases where the patient's previous records cannot be found, where the records are not clear, or the surgery was conducted abroad, the specialist should identify the implant manufacturer and model during preoperative X-ray controls. In this study, an auxiliary expert system is proposed for classifying manufacturers of shoulder implants on the basis of X-ray images that is automated, objective, and based on hybrid machine learning models. In the proposed system, ten different hybrid models consisting of a combination of deep learning and machine learning algorithms were created and statistically tested. According to the experimental results, an accuracy of 95.07% was achieved using the DenseNet201 + Logistic Regression model, one of the proposed hybrid machine learning models (p < 0.05). The proposed hybrid machine learning algorithms achieve the goal of low cost and high performance compared to other studies in the literature. The results lead the authors to believe that the proposed system could be used in hospitals as an automatic and objective system for assisting orthopedists in the rapid and effective determination of shoulder implant types before performing revision surgery.Conference Object An Empirical Comparison of Customer Behavior Modeling Approaches for Shopping List Prediction(Ieee, 2018) Peker, Serhat; Kocyigit, Altan; Eren, P. ErhanShopping list prediction is a crucial task for companies as it can enable to provide a specific customer a personalized list of products and improve customer satisfaction and loyalty as well. To predict customer behaviors, many studies in the literature have employed customer behavior modeling approaches which are individual-level and segment-based. However, previous efforts to predict customers' shopping lists have rarely employed these state-of-the-art approaches. In this manner, this paper introduces the segment based approach into the shopping list prediction and then presents an empirical comparison of the individual-level and the segment-based approaches in this problem. For this purpose, well-known machine learning classifiers and customers' purchase history are employed, and the comparison is performed on a real-life dataset by conducting a series of experiments. The results suggest that there is no clear winner in this comparison and the performances of customer behavior modeling approaches depend on the machine learning algorithm employed. The study can help researchers and practitioners to understand different aspects of using customer behavior modeling approaches in the shopping list prediction.Article Citation - WoS: 29Citation - Scopus: 43Text Classification Using Improved Bidirectional Transformer(Wiley, 2022) Tezgider, Murat; Yıldız, Beytullah; Yildiz, Beytullah; Aydin, Galip; Yıldız, BeytullahText data have an important place in our daily life. A huge amount of text data is generated everyday. As a result, automation becomes necessary to handle these large text data. Recently, we are witnessing important developments with the adaptation of new approaches in text processing. Attention mechanisms and transformers are emerging as methods with significant potential for text processing. In this study, we introduced a bidirectional transformer (BiTransformer) constructed using two transformer encoder blocks that utilize bidirectional position encoding to take into account the forward and backward position information of text data. We also created models to evaluate the contribution of attention mechanisms to the classification process. Four models, including long short term memory, attention, transformer, and BiTransformer, were used to conduct experiments on a large Turkish text dataset consisting of 30 categories. The effect of using pretrained embedding on models was also investigated. Experimental results show that the classification models using transformer and attention give promising results compared with classical deep learning models. We observed that the BiTransformer we proposed showed superior performance in text classification.Review Citation - WoS: 7Citation - Scopus: 9A Survey of Covid-19 Diagnosis Using Routine Blood Tests With the Aid of Artificial Intelligence Techniques(Mdpi, 2023) Habashi, Soheila Abbasi; Koyuncu, Murat; Alizadehsani, RoohallahSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causing a disease called COVID-19, is a class of acute respiratory syndrome that has considerably affected the global economy and healthcare system. This virus is diagnosed using a traditional technique known as the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. However, RT-PCR customarily outputs a lot of false-negative and incorrect results. Current works indicate that COVID-19 can also be diagnosed using imaging resolutions, including CT scans, X-rays, and blood tests. Nevertheless, X-rays and CT scans cannot always be used for patient screening because of high costs, radiation doses, and an insufficient number of devices. Therefore, there is a requirement for a less expensive and faster diagnostic model to recognize the positive and negative cases of COVID-19. Blood tests are easily performed and cost less than RT-PCR and imaging tests. Since biochemical parameters in routine blood tests vary during the COVID-19 infection, they may supply physicians with exact information about the diagnosis of COVID-19. This study reviewed some newly emerging artificial intelligence (AI)-based methods to diagnose COVID-19 using routine blood tests. We gathered information about research resources and inspected 92 articles that were carefully chosen from a variety of publishers, such as IEEE, Springer, Elsevier, and MDPI. Then, these 92 studies are classified into two tables which contain articles that use machine Learning and deep Learning models to diagnose COVID-19 while using routine blood test datasets. In these studies, for diagnosing COVID-19, Random Forest and logistic regression are the most widely used machine learning methods and the most widely used performance metrics are accuracy, sensitivity, specificity, and AUC. Finally, we conclude by discussing and analyzing these studies which use machine learning and deep learning models and routine blood test datasets for COVID-19 detection. This survey can be the starting point for a novice-/beginner-level researcher to perform on COVID-19 classification.Article Citation - WoS: 38Citation - Scopus: 48Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion(Asme, 2020) Ozel, Tugrul; Altay, Ayca; Kaftanoglu, Bilgin; Leach, Richard; Senin, Nicola; Donmez, AlkanThe powder bed fusion-based additive manufacturing process uses a laser to melt and fuse powder metal material together and creates parts with intricate surface topography that are often influenced by laser path, layer-to-layer scanning strategies, and energy density. Surface topography investigations of as-built, nickel alloy (625) surfaces were performed by obtaining areal height maps using focus variation microscopy for samples produced at various energy density settings and two different scan strategies. Surface areal height maps and measured surface texture parameters revealed the highly irregular nature of surface topography created by laser powder bed fusion (LPBF). Effects of process parameters and energy density on the areal surface texture have been identified. Machine learning methods were applied to measured data to establish input and output relationships between process parameters and measured surface texture parameters with predictive capabilities. The advantages of utilizing such predictive models for process planning purposes are highlighted.Article Citation - WoS: 1Citation - Scopus: 1Machine Vs. Deep Learning Comparision for Developing an International Sign Language Translator(Taylor & Francis Ltd, 2022) Eryilmaz, Meltem; Balkaya, Ecem; Ucan, Eylul; Turan, Gizem; Oral, Seden GulayThis study aims to enable deaf and hard-of-hearing people to communicate with other individuals who know and do not know sign language. The mobile application was developed for video classification by using MediaPipe Library in the study. While doing this, considering the problems that deaf and hearing loss individuals face in Turkey and abroad modelling and training stages were carried out with the English language option. With the real-time translation feature added to the study individuals were provided with instant communication. In this way, communication problems experienced by hearing-impaired individuals will be greatly reduced. Machine learning and Deep learning concepts were investigated in the study. Model creation and training stages were carried out using VGG16, OpenCV, Pandas, Keras, and Os libraries. Due to the low success rate in the model created using VGG16, the MediaPipe library was used in the formation and training stages of the model. The reason for this is that, thanks to the solutions available in the MediaPipe library, it can normalise the coordinates in 3D by marking the regions to be detected in the human body. Being able to extract the coordinates independently of the background and body type in the videos in the dataset increases the success rate of the model in the formation and training stages. As a result of an experiment, the accuracy rate of the deep learning model is 85% and the application can be easily integrated with different languages. It is concluded that deep learning model is more accure than machine learning one and the communication problem faced by hearing-impaired individuals in many countries can be reduced easily.Article Citation - WoS: 6Deep Learning-Based Defect Prediction for Mobile Applications(Mdpi, 2022) Jorayeva, Manzura; Akbulut, Akhan; Catal, Cagatay; Mishra, AlokSmartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred.Article Citation - WoS: 2Citation - Scopus: 2Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms(Mdpi, 2023) Yilmaz, Vadi Su; Yılmaz, Vadi Su; Eseller, Kemal Efe; Aslan, Ozgur; Aslan, Özgür; Bayraktar, Emin; Eseller, Kemal Efe; Yılmaz, Vadi Su; Aslan, Özgür; Eseller, Kemal Efe; Electrical-Electronics Engineering; Department of Electrical & Electronics Engineering; Mechanical Engineering; Electrical-Electronics Engineering; Mechanical Engineering; Department of Electrical & Electronics EngineeringThis paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined.

