Search Results

Now showing 1 - 10 of 83
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    Design and Applications of Al/Inse Hybrid Device
    (Ieee-inst Electrical Electronics Engineers inc, 2015) Qasrawi, Atef F.; Khanfar, Hazem K.
    In this paper, a hybrid device made of Ag/BN Schottky barrier and anisotype InSe/BN heterojunction is designed and characterized. The design of the energy band diagram of the device revealed a valance band splitting at the InSe/BN interface and a barrier height at the Ag/BN junction of 3.04 and 6.49 eV, respectively. These parameters which were designed to force current conduction by tunneling were experimentally confirmed by the dark I-V characteristics which revealed an electric field assisted tunneling process. The hybrid device exhibited high/low current switching property at Vs = 2.60 V when forward biased. When the device was exposed to 850-nm lasers light, Vs regularly increased with increasing light power indicating the applicability of these devices as IR photodetectors. In addition, when it was used as capacitor and depleted with signal of frequency of 0.1 GHz and varying amplitude it showed good energy storing property with a quality factor of similar to 200. On the other hand, when the hybrid device was used as microwave resonator it behaves like bandstop filter that blocks signals of various notch frequencies in the range of 1.58-2.30 GHz. The features of the device are promising as they indicate the applicability of the Al/InSe/BN/Ag in communication technology.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 48
    A Fusion-Based Framework for Wireless Multimedia Sensor Networks in Surveillance Applications
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Yazici, Adnan; Koyuncu, Murat; Sert, Seyyit Alper; Yilmaz, Turgay
    Multimedia sensors enable monitoring applications to obtain more accurate and detailed information. However, the development of efficient and lightweight solutions for managing data traffic over wireless multimedia sensor networks (WMSNs) has become vital because of the excessive volume of data produced by multimedia sensors. As part of this motivation, this paper proposes a fusion-based WMSN framework that reduces the amount of data to be transmitted over the network by intra-node processing. This framework explores three main issues: 1) the design of a wireless multimedia sensor (WMS) node to detect objects using machine learning techniques; 2) a method for increasing the accuracy while reducing the amount of information transmitted by the WMS nodes to the base station, and; 3) a new cluster-based routing algorithm for the WMSNs that consumes less power than the currently used algorithms. In this context, a WMS node is designed and implemented using commercially available components. In order to reduce the amount of information to be transmitted to the base station and thereby extend the lifetime of a WMSN, a method for detecting and classifying objects on three different layers has been developed. A new energy-efficient cluster-based routing algorithm is developed to transfer the collected information/data to the sink. The proposed framework and the cluster-based routing algorithm are applied to our WMS nodes and tested experimentally. The results of the experiments clearly demonstrate the feasibility of the proposed WMSN architecture in the real-world surveillance applications.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 17
    Limit and Application Range of the Slope-Diffraction Method for Wireless Communications
    (Ieee-inst Electrical Electronics Engineers inc, 2003) Kara, A; Bertoni, HL; Yazgan, E
    Limitations on the use of the uniform theory of diffraction (UTD) slope-diffraction. method for propagation past knife edges are investigated. The settled field that is diffracted past rows of buildings, as computed by numerical integration, has the characteristics of amplitude and phase variation with a scale length that is large compared to wavelength and,has small amplitude near the edges. Using this field, it is shown that the error in the UTD slope-diffraction method for diffraction past a final screen is connected with the Fresnel width, as compared to the scale length of the settled
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Evaluation of Ten Open-Source Eye-Movement Classification Algorithms in Simulated Surgical Scenarios
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Dalveren, Gonca Gokce Menekse; Cagiltay, Nergiz Ercil
    Despite providing several insights into visual attention and evidence regarding certain brain states and psychological functions, classifying eye movements is a highly demanding process. Currently, there are several algorithms to classify eye movement events which use different approaches. However, to date, only a limited number of studies have assessed these algorithms under specific conditions, such as those required for surgical training programmes. This study presents an investigation of ten open-source eye-movement classification algorithms using the Eye Tribe eye-tracker. The algorithms were tested on the eye-movement records obtained from 23 surgical residents, who performed computer-based surgical simulation tasks under different hand conditions. The aim was to offer data for the improvement of surgical training programmes. According to the results, due to the different classification methods and default threshold values, the ten algorithms produced different results. Considering the fixation duration, the only common event for all of the investigated algorithms, the binocular-individual threshold (BIT) algorithm resulted in a different clustering compared to the other algorithms. Based on the other set of common events, three clusters were determined by eight algorithms (except BIT and event detection (ED)), distinguishing dispersion-based, velocity-based and modified versions of velocity-based algorithms. Accordingly, it was concluded that dispersion-based and velocity-based algorithms provided different results. Additionally, as it individually specifies the threshold values for the eye-movement data, when there is no consensus about the threshold values to be set, the BIT algorithm can be selected. Especially for such cases like simulation-based surgical skill-training, the use of individualised threshold values in the BIT algorithm can be more beneficial in classifying the raw eye data and thus evaluating the individual progress levels of trainees based on their eye movement behaviours. In conclusion, the threshold values had a critical effect on the algorithm results. Since default values may not always be suitable for the unique features of different data sets, guidelines should be developed to indicate how the threshold values are set for each algorithm.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 16
    Joint Reliability Importance in Coherent Systems With Exchangeable Dependent Components
    (Ieee-inst Electrical Electronics Engineers inc, 2016) Eryilmaz, Serkan; Oruc, Ozlem Ege; Oger, Volkan
    In this paper, a general formula for computing the joint reliability importance of two components is obtained for a binary coherent system that consists of exchangeable dependent components. Using the new formula, the joint reliability importance can be easily calculated if the path sets of the system are known. As a special case, an expression for the joint reliability importance of two components is also obtained for a system consisting of independent and identical components. Illustrative numerical results are presented to compare the joint reliability importance of two components in the bridge system for the two cases when the components are exchangeable dependent and when the components are independent and identical.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 34
    Discrete Time Shock Models in a Markovian Environment
    (Ieee-inst Electrical Electronics Engineers inc, 2016) Eryilmaz, Serkan
    This paper deals with two different shock models in a Markovian environment. We study a system from a reliability point of view under these two shock models. According to the first model, the system fails if the cumulative shock magnitude exceeds a critical level, while in the second model the failure occurs when the cumulative effect of the shocks in consecutive periods is above a critical level. The shock occurrences over discrete time periods are assumed to be Markovian. We obtain expressions for the failure time distributions of the system under the two model. Illustrative computational results are presented for the survival probabilities and mean time to failure values of the system.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Analysis of the Junction Properties of C/Gase0.5< Back-To Schottky-Type Photodetectors
    (Ieee-inst Electrical Electronics Engineers inc, 2015) Khanfar, Hazem K.; Qasrawi, Atef F.; Gasanly, Nizami M.
    In this paper, a C/GaSe0.5S0.5/C metal-semiconductor-metal photodetector is suggested and described. The device is explored by means of current-voltage and capacitance-voltage (C-V) characteristics under different photoexcitation intensities. It was observed that the design of the back-to-back Schottky device has reduced the dark current of the normal Ag/GaSe0.5S0.5/C Schottky diode by 13 times and increased the photosensitivity from 3.8 to similar to 2.1x10(3). The device exhibited a barrier height of 0.842 eV in the dark. The barrier height is reduced via photoexcitation. In addition, the C/GaSe0.5S0.5/C device exhibited an ON/OFF switching property from low injection OFF to high injection ON at specific biasing voltages. This voltage decreased with the increasing illumination intensity. On the other hand, the C-V characteristics of the device, which was recorded for an ac input signal with 100 MHz at different levels of photoexcitation shifted up when the intensity of light was increased. When the same measurement was repeated at signal frequency of 1.6 GHz, the C-V characteristics reflected a different level of capacitance response. These features of C/GaSe0.5S0.5/C photodetectors nominate the device to be used as multipurpose optical switches being suitable to store different levels of electromagnetic energy at microwave frequencies.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 31
    Discrete Lissajous Figures and Applications
    (Ieee-inst Electrical Electronics Engineers inc, 2014) Karacor, Deniz; Nazlibilek, Sedat; Sazli, Murat H.; Akarsu, Eyup S.
    In this paper, an innovative method based on an algorithm utilizing discrete convolutions of discrete-time functions is developed to obtain and represent discrete Lissajous and recton functions. They are actually discrete auto- and cross-correlation functions. The theory of discrete Lissajous figures is developed. The concept of rectons is introduced. The relation between the discrete Lissajous figures and autocorrelation functions is set. Some applications are described including phase, frequency, and period determination of periodic signals, time-domain characteristics (such as damping ratio) of a control system, and abnormality and spike detection within a signal, are described. In addition, an electrocardiogram signal with an abnormality of atrial fibrillation is given for abnormality detection by means of recton functions. An epileptic activity detection within an electroencephalography signal is also given.
  • Article
    Citation - WoS: 17
    Citation - Scopus: 24
    Use of the Iqrf Technology in Internet-Of Smart Cities
    (Ieee-inst Electrical Electronics Engineers inc, 2020) Bouzidi, Mohammed; Dalveren, Yaser; Cheikh, Faouzi Alaya; Derawi, Mohammad
    In recent years, there has been a growing interest in building smart cities based on the Internet of Things (IoT) technology. However, selecting a low-cost IoT wireless technology that enables low-power connectivity remains one of the key challenges in integrating IoT to smart cities. In this context, the IQRF technology offers promising opportunities to provide cost-effective solutions. Yet, in the literature, there are limited studies on utilizing IQRF technology for smart city applications. Therefore, this study is aimed at increasing the awareness about the use of IQRF technology in IoT-based smart city development. For this purpose, a review of smart city architectures along with challenges/requirements in adopting IoT for smart cities is provided. Then, some of the common cost-effective IoT wireless technologies that enable low-power consumption are briefly presented. Next, the benefits of IQRF technology over other technologies are discussed by making theoretical comparisons based on technical documentations and reports. Moreover, the research efforts currently being undertaken by the authors as a part of ongoing project on the development of IoT-based smart city system in Gj & x00F8;vik Municipality, Norway, are conceptually introduced. Finally, the future research directions are addressed.
  • Article
    Citation - WoS: 55
    Citation - Scopus: 70
    Assessment of Features and Classifiers for Bluetooth Rf Fingerprinting
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Ali, Aysha M.; Uzundurukan, Emre; Kara, Ali
    Recently, network security has become a major challenge in communication networks. Most wireless networks are exposed to some penetrative attacks such as signal interception, spoofing, and stray. Radio frequency (RF) fingerprinting is considered to be a promising solution for network security problems and has been applied with various improvements. In this paper, extensive data from Bluetooth (BT) devices are utilized in RF fingerprinting implementation. Hilbert-Huang transform (HHT) has been used, for the first time, for RF fingerprinting of Bluetooth (BT) device identification. In this way, time-frequency-energy distributions (TFED) are utilized. By means of the signals' energy envelopes, the transient signals are detected with some improvements. Thirteen features are extracted from the signals' transients along with their TFEDs. The extracted features are pre-processed to evaluate their usability. The implementation of three different classifiers to the extracted features is provided for the first time in this paper. A comparative analysis based on the receiver operating characteristics (ROC) curves, the associated areas under curves (AUC), and confusion matrix are obtained to visualize the performance of the applied classifiers. In doing this, different levels of signal to noise ratio (SNR) levels are used to evaluate the robustness of the extracted features and the classifier performances. The classification performance demonstrates the feasibility of the method. The results of this paper may help readers assess the usability of RF fingerprinting for BT signals at the physical layer security of wireless networks.