Use of the IQRF Technology in Internet-of-Things-Based Smart Cities

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In recent years, there has been a growing interest in building smart cities based on the Internet of Things (IoT) technology. However, selecting a low-cost IoT wireless technology that enables low-power connectivity remains one of the key challenges in integrating IoT to smart cities. In this context, the IQRF technology offers promising opportunities to provide cost-effective solutions. Yet, in the literature, there are limited studies on utilizing IQRF technology for smart city applications. Therefore, this study is aimed at increasing the awareness about the use of IQRF technology in IoT-based smart city development. For this purpose, a review of smart city architectures along with challenges/requirements in adopting IoT for smart cities is provided. Then, some of the common cost-effective IoT wireless technologies that enable low-power consumption are briefly presented. Next, the benefits of IQRF technology over other technologies are discussed by making theoretical comparisons based on technical documentations and reports. Moreover, the research efforts currently being undertaken by the authors as a part of ongoing project on the development of IoT-based smart city system in Gj & x00F8;vik Municipality, Norway, are conceptually introduced. Finally, the future research directions are addressed.

Description

Bouzidi, Mohammed/0000-0002-4858-7360; Derawi, Mohammad/0000-0003-0448-7613; Dalveren, Yaser/0000-0002-9459-0042

Keywords

Internet of Things, IQRF, low-cost, smart city, wireless communication

Turkish CoHE Thesis Center URL

Citation

9

WoS Q

Q2

Scopus Q

Q1

Source

Volume

8

Issue

Start Page

56615

End Page

56629

Collections