2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 12Citation - Scopus: 14Analysis of Double Gaussian Distribution on Barrier Inhomogeneity in a Au/n-4H SiC Schottky Diode(Springer, 2021) Gullu, H. H.; Sirin, D. Seme; Yildiz, D. E.A n-4H SiC based diode is fabricated by an Au front metal contact to provide rectification at the metal-semiconductor (MS) junction, and a back ohmic contact is also obtained using Au metal with post-thermal heating. MS diode characteristics are investigated by current-voltage (I - V) measurements with a wide range of temperature from 80 K to 300 K. At each temperature, rectifying behavior is achieved and it is improved with an increase in temperature. Barrier height and ideality factor are calculated according to the thermionic emission (TE) model from linearity in the forward bias region of the ln(I) versus V plot. The experimental zero-bias barrier height (Phi(b0)) values are in a good agreement with literature, and at around room temperature the ideality factor (n) reaches unity. At saturation regions in I - V curves, parasitic resistance values are derived by Ohm's law and the series resistance values are also reevaluated by Cheung's relation. Detailed I - V analysis is performed by modifying the TE model with an approximation of low barrier patches embedded in the main barrier height. Two linear relations in the characteristic plots of Phi(b0) and n indicate that double Gaussian distribution is a suitable current conduction model via localized barrier patches at low temperatures. Additionally, reverse bias current flow is analyzed under the dominant effect of Poole-Frenkel emission associated with the interfacial traps. According to the characteristic electric field-dependent current density plot, emission barrier height and relative dielectric constant for n-4H SiC are calculated.Article Citation - WoS: 14Citation - Scopus: 14Temperature Dependence of Electrical Properties in In/Cu2< Diodes(indian Acad Sciences, 2019) Gullu, H. H.; Yildiz, D. E.; Surucu, O. Bayrakli; Terlemezoglu, M.; Parlak, M.Cu2ZnSnTe4 (CZTTe) thin films with In metal contact were deposited by thermal evaporation on monocrystalline n-type Si wafers with Ag ohmic contact to investigate the device characteristics of an In/CZTTe/Si/Ag diode. The variation in electrical characteristics of the diode was analysed by carrying out current-voltage (I-V) measurements in the temperature range of 220-360 K. The forward bias I-V behaviour was modelled according to the thermionic emission (TE) theory to obtain main diode parameters. In addition, the experimental data were detailed by taking into account the presence of an interfacial layer and possible dominant current transport mechanisms were studied under analysis of ideality factor, n. Strong effects of temperature were observed on zero-bias barrier height (Phi(B0)) and n values due to barrier height inhomogeneity at the interface. The anomaly observed in the analysis of TE was modelled by Gaussian distribution (GD) of barrier heights with 0.844 eV mean barrier height and 0.132 V standard deviation. According to the Tung's theoretical approach, a linear correlation between Phi(B0) and n cannot be satisfied, and thus the modified Richardson plot was used to determine Richardson constant (A*). As a result, A* was calculated approximately as 120.6 A cm(-2) K-2 very close to the theoretical value for n-Si. In addition, the effects of series resistance (R-s) by estimating from Cheng's function and density of surface states (N-ss) by taking the bias dependence of effective barrier height, were discussed.

