10 results
Search Results
Now showing 1 - 10 of 10
Conference Object Citation - WoS: 1Citation - Scopus: 1Deep Learning-Based Covid-19 Detection Using Lung Parenchyma Ct Scans(Springer international Publishing Ag, 2022) Kaya, Zeynep; Kurt, Zuhal; Koca, Nizameddin; Cicek, Sumeyye; Isik, SahinDuring the outbreak of the COVID-19 pandemic, it is important to improve early diagnosis using effective ways in order to lower the risks and further spread of the viruses as early as possible. This is also important when it comes to appropriate treatments and the reduction of mortality rates. In this respect, computer tomography (CT) scanning is a useful technique in detecting COVID-19. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19 positives and 86 COVID-19 negative patients, all from Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies demonstrate that this dataset is effectively utilized deep learning-based models for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a pre-processing stage. Then, the performance of the proposed method is evaluated using InceptionV3 and Xception convolutional neural networks, yielding a 96.20% and 96.55% accuracy rate and 95.00% and 95.50% F1-score, respectively. These state-of-the-art models are observed to detect COVID-19 cases faster and more accurately. In addition, the fine-tuning stage of the convolutional neural network (CNN) features sufficiently improves this accuracy rate. For these features, the support vector machine (SVM) classifier is used, resulting in remarkable 96.76% accuracy rate and 95.81% F1-score. The implications of the proposed method are immense both for present-day applications as well as future developments.Conference Object Citation - Scopus: 31Improving Text Classification With Transformer(Institute of Electrical and Electronics Engineers Inc., 2021) Soyalp,G.; Alar,A.; Ozkanli,K.; Yildiz,B.Huge amounts of text data are produced every day. Processing text data that accumulates and grows exponentially every day requires the use of appropriate automation tools. Text classification, a Natural Language Processing task, has the potential to provide automatic text data processing. Many new models have been proposed to achieve much better results in text classification. The transformer model has been introduced recently to provide superior performance in terms of accuracy and processing speed in deep learning. In this article, we propose an improved Transformer model for text classification. The dataset containing information about the books was collected from an online resource and used to train the models. We witnessed superior performance in our proposed Transformer model compared to previous state-of-art models such as L S T M and CNN. © 2021 IEEEArticle Citation - WoS: 3Citation - Scopus: 3Detection of spermatogonial stem/progenitor cells in prepubertal mouse testis with deep learning(Springer/plenum Publishers, 2023) Kahveci, Burak; Onen, Selin; Akal, Fuat; Korkusuz, PetekPurposeRapid and easy detection of spermatogonial stem/progenitor cells (SSPCs) is crucial for clinicians dealing with male infertility caused by prepubertal testicular damage. Deep learning (DL) methods may offer visual tools for tracking SSPCs on testicular strips of prepubertal animal models. The purpose of this study is to detect and count the seminiferous tubules and SSPCs in newborn mouse testis sections using a DL method.MethodsTesticular sections of the C57BL/6-type newborn mice were obtained and enumerated. Odd-numbered sections were stained with hematoxylin and eosin (H&E), and even-numbered sections were immune labeled (IL) with SSPC specific marker, SALL4. Seminiferous tubule and SSPC datasets were created using odd-numbered sections. SALL4-labeled sections were used as positive control. The YOLO object detection model based on DL was used to detect seminiferous tubules and stem cells.ResultsTest scores of the DL model in seminiferous tubules were obtained as 0.98 mAP, 0.93 precision, 0.96 recall, and 0.94 f1-score. The SSPC test scores were obtained as 0.88 mAP, 0.80 precision, 0.93 recall, and 0.82 f1-score.ConclusionSeminiferous tubules and SSPCs on prepubertal testicles were detected with a high sensitivity by preventing human-induced errors. Thus, the first step was taken for a system that automates the detection and counting process of these cells in the infertility clinic.Article Citation - WoS: 197Citation - Scopus: 296Co-Lstm: Convolutional Lstm Model for Sentiment Analysis in Social Big Data(Elsevier Sci Ltd, 2021) Behera, Ranjan Kumar; Jena, Monalisa; Rath, Santanu Kumar; Misra, SanjayAnalysis of consumer reviews posted on social media is found to be essential for several business applications. Consumer reviews posted in social media are increasing at an exponential rate both in terms of number and relevance, which leads to big data. In this paper, a hybrid approach of two deep learning architectures namely Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) (RNN with memory) is suggested for sentiment classification of reviews posted at diverse domains. Deep convolutional networks have been highly effective in local feature selection, while recurrent networks (LSTM) often yield good results in the sequential analysis of a long text. The proposed Co-LSTM model is mainly aimed at two objectives in sentiment analysis. First, it is highly adaptable in examining big social data, keeping scalability in mind, and secondly, unlike the conventional machine learning approaches, it is free from any particular domain. The experiment has been carried out on four review datasets from diverse domains to train the model which can handle all kinds of dependencies that usually arises in a post. The experimental results show that the proposed ensemble model outperforms other machine learning approaches in terms of accuracy and other parameters.Review Citation - WoS: 2Citation - Scopus: 5Machine Learning for Sustainable Reutilization of Waste Materials as Energy Sources - a Comprehensive Review(Taylor & Francis inc, 2024) Peng, Wei; Sadaghiani, Omid KarimiThis work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes.Article Citation - WoS: 85Citation - Scopus: 132Detecting Cassava Mosaic Disease Using a Deep Residual Convolutional Neural Network With Distinct Block Processing(Peerj inc, 2021) Oyewola, David Opeoluwa; Dada, Emmanuel Gbenga; Misra, Sanjay; Damasevicius, RobertasFor people in developing countries, cassava is a major source of calories and carbohydrates. However, Cassava Mosaic Disease (CMD) has become a major cause of concern among farmers in sub-Saharan Africa countries, which rely on cassava for both business and local consumption. The article proposes a novel deep residual convolution neural network (DRNN) for CMD detection in cassava leaf images. With the aid of distinct block processing, we can counterbalance the imbalanced image dataset of the cassava diseases and increase the number of images available for training and testing. Moreover, we adjust low contrast using Gamma correction and decorrelation stretching to enhance the color separation of an image with significant band-to-band correlation. Experimental results demonstrate that using a balanced dataset of images increases the accuracy of classification. The proposed DRNN model outperforms the plain convolutional neural network (PCNN) by a significant margin of 9.25% on the Cassava Disease Dataset from Kaggle.Conference Object Citation - Scopus: 2Detecting Errors in Automatic Image Captioning by Deep Learning;(Institute of Electrical and Electronics Engineers Inc., 2021) Karakaya,M.Automatic tagging of images is an important researcli topic in tlie field of image processing. Anotlier area similar to this is the automatic generation of picture captions. In this study, a deep learning model that automatically tags the pictures is used to detect errors in image captions. As a result of the initial experiments, it is observed that the proposed system can find up to 80% of the errors in the image captions. © 2021 IEEEArticle Citation - WoS: 6Citation - Scopus: 6Ensemble Transfer Learning Using Maizeset: a Dataset for Weed and Maize Crop Recognition at Different Growth Stages(Elsevier Sci Ltd, 2024) Das, Zeynep Dilan; Alam, Muhammad Shahab; Khan, Muhammad UmerMaize holds significant importance as a staple food source globally. Increasing maize yield requires the effective removal of weeds from maize fields, as they pose a detrimental threat to the growth of maize plants. In recent years, there has been a drive towards Precision Agriculture (PA), involving the integration of farming methods with artificial intelligence and advanced automation techniques. In the realm of PA, deep learning techniques present a promising solution for addressing the complex challenge of classifying maize plants and weeds. In this work, a deep learning method based on transfer learning and ensemble techniques is developed. The proposed method is implementable on any number of existing CNN models irrespective of their architecture and complexity. The developed ensemble model is trained and tested on our custom-built dataset, namely MaizeSet, comprising 3330 images of maize plants and weeds under varying environmental conditions. The performance of the ensemble model is compared against individual pre-trained VGG16 and InceptionV3 models using two experiments: the identification of weeds and maize plants, and the identification of the various vegetative growth stages of maize plants. VGG16 attained an accuracy of 83% in Experiment 1 and 71% in Experiment 2, while InceptionV3 showcased improved performance, boasting an accuracy of 98% in Experiment 1 and 81% in Experiment 2. With the proposed ensemble approach, VGG16 when combined with InceptionV3, achieved an accuracy of 90% for Experiment 1 and 80% for Experiment 2. The findings demonstrate that integrating a suboptimal pre-defined classifier, specifically VGG16, with a more proficient model like InceptionV3, yields enhanced performance across various analytical metrics. This underscores the efficacy of ensemble techniques in the context of maize classification and analogous applications within the agricultural domain.Review Citation - WoS: 3Citation - Scopus: 5A Systematic Review on Smart Waste Biomass Production Using Machine Learning and Deep Learning(Springer, 2023) Peng, Wei; Sadaghiani, Omid KarimiThe utilization of waste materials, as an energy resources, requires four main steps of production, pre-treatment, bio-refinery, and upgrading. This work reviews Machine Learning applications in the waste biomass production step. By investigating numerous related works, it is concluded that there is a considerable reviewing gap in the surveying and collecting the applications of Machine Learning in the waste biomass. To fill this gap with the current work, the kinds and resources of waste biomass as well as the role of Machine Learning and Deep Learning in their development are reviewed. Moreover, the storage and transportation of the wastes are surveyed followed by the application of Machine Learning and Deep Learning in these areas. Summarily, after analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the waste collecting quality and quality, improve the predictions, diminish the losses, as well as increase storage and transformation conditions.Article Citation - WoS: 13Citation - Scopus: 23Evaluation of Efficientnet Models for Covid-19 Detection Using Lung Parenchyma(Springer London Ltd, 2023) Kurt, Zuhal; Isik, Sahin; Kaya, Zeynep; Anagun, Yildiray; Koca, Nizameddin; Cicek, SuemeyyeWhen the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments.

