Deep Learning-Based COVID-19 Detection Using Lung Parenchyma CT Scans

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Springer international Publishing Ag

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

During the outbreak of the COVID-19 pandemic, it is important to improve early diagnosis using effective ways in order to lower the risks and further spread of the viruses as early as possible. This is also important when it comes to appropriate treatments and the reduction of mortality rates. In this respect, computer tomography (CT) scanning is a useful technique in detecting COVID-19. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19 positives and 86 COVID-19 negative patients, all from Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies demonstrate that this dataset is effectively utilized deep learning-based models for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a pre-processing stage. Then, the performance of the proposed method is evaluated using InceptionV3 and Xception convolutional neural networks, yielding a 96.20% and 96.55% accuracy rate and 95.00% and 95.50% F1-score, respectively. These state-of-the-art models are observed to detect COVID-19 cases faster and more accurately. In addition, the fine-tuning stage of the convolutional neural network (CNN) features sufficiently improves this accuracy rate. For these features, the support vector machine (SVM) classifier is used, resulting in remarkable 96.76% accuracy rate and 95.81% F1-score. The implications of the proposed method are immense both for present-day applications as well as future developments.

Description

kaya, zeynep/0000-0001-9831-6246; KOCA, Nizameddin/0000-0003-1457-4366; KURT, ZUHAL/0000-0003-1740-6982

Keywords

Lung parenchyma, Deep learning, COVID-19 detection, CT image dataset, Fine-tuning, K-means, Support vector machine

Turkish CoHE Thesis Center URL

Fields of Science

Citation

1

WoS Q

Scopus Q

Q4

Source

International Conference on Computing and Communication Networks (ICCCN) -- NOV 19-20, 2021 -- Manchester Metropolitan Univ, Manchester, ENGLAND

Volume

394

Issue

Start Page

261

End Page

275

Collections