Deep Learning-Based COVID-19 Detection Using Lung Parenchyma CT Scans

dc.authoridkaya, zeynep/0000-0001-9831-6246
dc.authoridKOCA, Nizameddin/0000-0003-1457-4366
dc.authoridKURT, ZUHAL/0000-0003-1740-6982
dc.authorscopusid56247256600
dc.authorscopusid55806648900
dc.authorscopusid56247318100
dc.authorscopusid55257455900
dc.authorscopusid57822380500
dc.authorwosidkaya, zeynep/N-5338-2015
dc.authorwosidKOCA, Nizameddin/V-9228-2017
dc.contributor.authorKaya, Zeynep
dc.contributor.authorKurt, Zuhal
dc.contributor.authorKoca, Nizameddin
dc.contributor.authorCicek, Sumeyye
dc.contributor.authorIsik, Sahin
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:16:50Z
dc.date.available2024-07-05T15:16:50Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Kaya, Zeynep] Eskisehir Osmangazi Univ, Dept Elect & Elect Engn, Eskisehir, Turkey; [Kurt, Zuhal] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Isik, Sahin] Eskisehir Osmangazi Univ, Dept Comp Engn, Eskisehir, Turkey; [Koca, Nizameddin; Cicek, Sumeyye] Univ Hlth Sci, Dept Internal Med, Bursa, Turkeyen_US
dc.descriptionkaya, zeynep/0000-0001-9831-6246; KOCA, Nizameddin/0000-0003-1457-4366; KURT, ZUHAL/0000-0003-1740-6982en_US
dc.description.abstractDuring the outbreak of the COVID-19 pandemic, it is important to improve early diagnosis using effective ways in order to lower the risks and further spread of the viruses as early as possible. This is also important when it comes to appropriate treatments and the reduction of mortality rates. In this respect, computer tomography (CT) scanning is a useful technique in detecting COVID-19. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19 positives and 86 COVID-19 negative patients, all from Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies demonstrate that this dataset is effectively utilized deep learning-based models for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a pre-processing stage. Then, the performance of the proposed method is evaluated using InceptionV3 and Xception convolutional neural networks, yielding a 96.20% and 96.55% accuracy rate and 95.00% and 95.50% F1-score, respectively. These state-of-the-art models are observed to detect COVID-19 cases faster and more accurately. In addition, the fine-tuning stage of the convolutional neural network (CNN) features sufficiently improves this accuracy rate. For these features, the support vector machine (SVM) classifier is used, resulting in remarkable 96.76% accuracy rate and 95.81% F1-score. The implications of the proposed method are immense both for present-day applications as well as future developments.en_US
dc.identifier.citation1
dc.identifier.doi10.1007/978-981-19-0604-6_23
dc.identifier.endpage275en_US
dc.identifier.isbn9789811906046
dc.identifier.isbn9789811906039
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.scopus2-s2.0-85135085932
dc.identifier.scopusqualityQ4
dc.identifier.startpage261en_US
dc.identifier.urihttps://doi.org/10.1007/978-981-19-0604-6_23
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1677
dc.identifier.volume394en_US
dc.identifier.wosWOS:000874485500022
dc.institutionauthorKurt, Zühal
dc.language.isoenen_US
dc.publisherSpringer international Publishing Agen_US
dc.relation.ispartofInternational Conference on Computing and Communication Networks (ICCCN) -- NOV 19-20, 2021 -- Manchester Metropolitan Univ, Manchester, ENGLANDen_US
dc.relation.ispartofseriesLecture Notes in Networks and Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLung parenchymaen_US
dc.subjectDeep learningen_US
dc.subjectCOVID-19 detectionen_US
dc.subjectCT image dataseten_US
dc.subjectFine-tuningen_US
dc.subjectK-meansen_US
dc.subjectSupport vector machineen_US
dc.titleDeep Learning-Based COVID-19 Detection Using Lung Parenchyma CT Scansen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isAuthorOfPublication.latestForDiscoveryc1644357-fb5e-46b5-be18-1dd9b8e84e2e
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections