2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 1Citation - Scopus: 1EFFECT OF THE MQL TECHNIQUE ON CUTTING FORCE AND SURFACE QUALITY DURING THE SLOT MILLING OF TITANIUM ALLOY(inst Za Kovinske Materiale I in Tehnologie, 2022) Osman, Khaled Ali; Yilmaz, Volkan; Unver, Hakki Ozgur; Seker, Ulvi; Kilic, S. EnginIn this study, the effects of four control parameters, i.e., the cutting speed (v(c)), feed per tooth (f), depth of cut (a(p)), and flow rate of the cutting fluid (Q), on the surface roughness (R-a) and cutting force (F-c) were investigated in the slot milling of titanium alloys (Ti-6A1-4V). The effects of the control parameters were determined by a statistical analysis. In addition, RSM models for R-a and F-c during machining under three cooling/lubrication conditions, i.e., dry, flood, and minimum quantity lubrication (MQL), were obtained. The results revealed that both R-a and F-c are sensitive to changes in f, a(p) and Q. It was found that the MQL condition generates lower values of R-a where the surface roughness value is 0.227 mu m. By contrast. F-c values under the MQL condition were close to those of the flood condition and at times even better. The machining performance at a cutting-fluid flow rate of 36 mL/h under the MQL condition was found to be the best under certain machining conditions. MQL was found to be an effective alternative technique for conventional conditions when machining Ti-6Al-4V.Article Citation - WoS: 22Citation - Scopus: 27Modeling and Analysis of Surface Roughness of Microchannels Produced by Μ-Wedm Using an Ann and Taguchi Method(Korean Soc Mechanical Engineers, 2017) Jafari, Rahim; Kahya, Muge; Oliaei, Samad Nadimi Bavil; Unver, Hakki Ozgur; Ozyurt, Tuba OkutucuMicrochannel heat exchangers are used to remove the high heat fluxes generated in compact electronic devices. The roughness of the microchannels has a significant effect on the heat transfer characteristics, especially the nucleate boiling and pumping power. Therefore, development of predictive models of surface texture is of significant importance in controlling heat transfer characteristics of these devices. In this study, micro-Wire electrical discharge machining (mu-WEDM) was employed to fabricate metal-based microchannel heat sinks with different surface textures. First, experiments were conducted to achieve the desired surface roughness values. Oxygen-free copper is a common material in the cooling systems of electronic devices because of its high thermal conductivity and low cost. Design of experiment approach based on the Taguchi technique was used to find the optimum set of process parameters. An analysis of variance is also performed to determine the significance of process parameters on the surface texture. An artificial neural network model is utilized to assess the variation of the surface roughness with process parameters. The predictions are in very good agreement with results yielding a coefficient of determination of 99.5 %. The results enable to determine mu-WEDM parameters which can result in the desired surface roughness, to have a well-controlled flow and heat transfer characteristics for the microchannels.

